20 research outputs found

    Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy

    Full text link
    Closed expressions are derived for resonant multidimensional X-ray spectroscopy using the quasiparticle nonlinear exciton representation of optical response. This formalism is applied to predict coherent four wave mixing signals which probe single and two core-hole states. Nonlinear X-ray signals are compactly expressed in terms of one- and two- particle Green's functions which can be obtained from the solution of Hedin-like equations at the GWGW level.Comment: 10 pages and 3 figures (To appear in Physical Review B

    Excitation Dynamics and Relaxation in a Molecular Heterodimer

    Full text link
    The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the energy gap of the molecular excitation, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer

    Unravelling Coherent Dynamics and Energy Dissipation in Photosynthetic Complexes by 2D Spectroscopy

    Get PDF
    Spectroscopic studies of light harvesting and the subsequent energy conversion in photosynthesis can track quantum dynamics happening on the microscopic level. The Fenna-Matthews-Olson complex of the photosynthetic green sulfur bacteria Chlorobium tepidum is a prototype efficient light-harvesting antenna: it stores the captured photon energy in the form of excitons (collective excitations), which are subsequently converted to chemical energy with almost 100% efficiency. These excitons show an elaborate relaxation pattern involving coherent and incoherent pathways. We make use of the complex chirality and fundamental symmetries of multidimensional optical signals to design new sequences of ultrashort laser pulses that can distinguish between coherent quantum oscillations and incoherent energy dissipation during the exciton relaxation. The cooperative dynamical features, which reflect the coherent nature of excitations, are amplified. The extent of quantum oscillations and their timescales in photosynthesis can be readily extracted from the designed signals, showing that cooperativity is maintained during energy transport in the Fenna-Matthews-Olson complex. The proposed pulse sequences may also be applied to reveal information on the robustness of quantum states in the presence of fluctuating environments in other nanoscopic complexes and devices
    corecore