2 research outputs found
Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
(1) Background: Histopathological assessment of Wilms tumors (WT) is crucial for risk group classification to guide postoperative stratification in chemotherapy pre-treated WT cases. However, due to the heterogeneous nature of the tumor, significant interobserver variation between pathologists in WT diagnosis has been observed, potentially leading to misclassification and suboptimal treatment. We investigated whether artificial intelligence (AI) can contribute to accurate and reproducible histopathological assessment of WT through recognition of individual histopathological tumor components. (2) Methods: We assessed the performance of a deep learning-based AI system in quantifying WT components in hematoxylin and eosin-stained slides by calculating the Sørensen–Dice coefficient for fifteen predefined renal tissue components, including six tumor-related components. We trained the AI system using multiclass annotations from 72 whole-slide images of patients diagnosed with WT. (3) Results: The overall Dice coefficient for all fifteen tissue components was 0.85 and for the six tumor-related components was 0.79. Tumor segmentation worked best to reliably identify necrosis (Dice coefficient 0.98) and blastema (Dice coefficient 0.82). (4) Conclusions: Accurate histopathological classification of WT may be feasible using a digital pathology-based AI system in a national cohort of WT patients
Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
(1) Background: Histopathological assessment of Wilms tumors (WT) is crucial for risk group classification to guide postoperative stratification in chemotherapy pre-treated WT cases. However, due to the heterogeneous nature of the tumor, significant interobserver variation between pathologists in WT diagnosis has been observed, potentially leading to misclassification and suboptimal treatment. We investigated whether artificial intelligence (AI) can contribute to accurate and reproducible histopathological assessment of WT through recognition of individual histopathological tumor components. (2) Methods: We assessed the performance of a deep learning-based AI system in quantifying WT components in hematoxylin and eosin-stained slides by calculating the Sørensen–Dice coefficient for fifteen predefined renal tissue components, including six tumor-related components. We trained the AI system using multiclass annotations from 72 whole-slide images of patients diagnosed with WT. (3) Results: The overall Dice coefficient for all fifteen tissue components was 0.85 and for the six tumor-related components was 0.79. Tumor segmentation worked best to reliably identify necrosis (Dice coefficient 0.98) and blastema (Dice coefficient 0.82). (4) Conclusions: Accurate histopathological classification of WT may be feasible using a digital pathology-based AI system in a national cohort of WT patients