5 research outputs found

    Оцінювання зволоженості гірських водозборів при математичному моделюванні дощових паводків

    Get PDF
    Розроблено процедуру оцінювання зволоженості водозбору, яка не потребує тривалого моделювання в оперативних умовах.Разработана процедура оценивания увлажненности водосбора, которая исключает необходимость продолжительного моделирования в оперативных условиях

    Absence of thrombospondin-2 causes age-related dilated cardiomyopathy

    Get PDF
    BACKGROUND: The progressive shift from a young to an aged heart is characterized by alterations in the cardiac matrix. The present study investigated whether the matricellular protein thrombospondin-2 (TSP-2) may affect cardiac dimensions and function with physiological aging of the heart. METHODS AND RESULTS: TSP-2 knockout (KO) and wild-type mice were followed up to an age of 60 weeks. Survival rate, cardiac function, and morphology did not differ at a young age in TSP-2 KO compared with wild-type mice. However, >55% of the TSP-2 KO mice died between 24 and 60 weeks of age, whereas <10% of the wild-type mice died. In the absence of TSP-2, older mice displayed a severe dilated cardiomyopathy with impaired systolic function, increased cardiac dilatation, and fibrosis. Ultrastructural analysis revealed progressive myocyte stress and death, accompanied by an inflammatory response and replacement fibrosis, in aging TSP-2 KO animals, whereas capillary or coronary morphology or density was not affected. Importantly, adeno-associated virus-9 gene-mediated transfer of TSP-2 in 7-week-old TSP-2 KO mice normalized their survival and prevented dilated cardiomyopathy. In TSP-2 KO animals, age-related cardiomyopathy was accompanied by increased matrix metalloproteinase-2 and decreased tissue transglutaminase-2 activity, together with impaired collagen cross-linking. At the cardiomyocyte level, TSP-2 deficiency in vivo and its knockdown in vitro decreased the activation of the Akt survival pathway in cardiomyocytes. CONCLUSIONS: TSP-2 expression in the heart protects against age-dependent dilated cardiomyopath

    A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system

    No full text
    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor

    Development of a Supramolecular Hydrogel for Intraperitoneal Injections

    No full text
    Local intraperitoneal drug administration is considered a challenging drug delivery route. The therapeutic efficiency is low, mainly due to rapid clearance of drugs. To increase the intraperitoneal retention time of specific drugs, a pH-sensitive supramolecular hydrogel that can act as a drug delivery vehicle is developed. To establish the optimal formulation of the hydrogel and to study its feasibility, safety, and tissue compatibility, in vitro, postmortem, and in vivo experiments are performed. In vitro tests reveal that a hydrogelator formulation with pH >= 9 results in a constant viscosity of 0.1 Pa center dot s. After administration postmortem, the hydrogel covers the parietal and visceral peritoneum with a thin, soft layer. In the subsequent in vivo experiments, 14 healthy rats are subjected to intraperitoneal injection with the hydrogel. Fourteen and 28 days after implantation, the animals are euthanized. Intraperitoneal exposure to the hydrogel is not resulted in significant weight loss or discomfort. Moreover, no macroscopic adverse effects or signs of organ damage are detected. In several intra-abdominal tissues, vacuolated macrophages are found indicating a physiological degradation of the synthetic hydrogel. This study demonstrates that the supramolecular hydrogel is safe for intraperitoneal application and that the hydrogel shows good tissue compatibility in rats
    corecore