510 research outputs found

    Chandra Observations and the Nature of the Anomalous Arms of NGC 4258 (M 106)

    Get PDF
    This paper presents high resolution X-ray observations with Chandra of NGC 4258 and infers the nature of the so called ``anomalous arms'' in this galaxy. The anomalous arms dominate the X-ray image; diffuse X-ray emission from the ``plateaux'' regions, seen in radio and Hα\alpha imaging, is also found. X-ray spectra have been obtained at various locations along the anomalous arms and are well described by thermal (mekal) models with kT in the range 0.37 - 0.6 keV. The previously known kpc-scale radio jets are surrounded by cocoons of hot X-ray emitting gas for the first 350 pc of their length. The radio jets, seen in previous VLBA and VLA observations, propagate perpendicular to the compact nuclear gas disk (imaged in water vapor maser emission). The angle between the jets and the rotation axis of the galactic disk is 60∘^{\circ}. The jets shock the normal interstellar gas along the first 350 pc of their length, causing the hot, X-ray emitting cocoons noted above. At a height of z = 175 pc from the disk plane, the jets exit the normal gas disk and then propagate though the low density halo until they reach ``hot spots'' (at 870 pc and 1.7 kpc from the nucleus), which are seen in radio, optical line and X-ray emission. These jets must drive mass motions into the low density halo gas. This high velocity halo gas impacts on the dense galactic gas disk and shock heats it along and around a ``line of damage'', which is the projection of the jets onto the galactic gas disk as viewed down the galaxy disk rotation axis. However, because NGC 4258 is highly inclined (ii = 64∘^{\circ}), the ``line of damage'' projects on the sky in a different direction to the jets themselves. We calculate the expected p.a. of the ``line of damage'' on the sky and find that it coincides with the anomalous arms to within 2∘^{\circ}. (Abstract truncated).Comment: 12 pages plus 9 figures, to be published in the Astrophysical Journal, v560, nr 1, pt 1 (Oct 10, 2001 issue

    The Sloan-Lens ACS Survey II: stellar populations and internal structure of early-type lens galaxies

    Get PDF
    We derive Fundamental Plane parameters of 15 early-type lens galaxies identified by the Sloan Lens ACS (SLACS) Survey. The size of the sample allows us to investigate for the first time the distribution of lens galaxies in the FP space. After correcting for evolution, we find that lens galaxies occupy a subset of the local FP. The edge-on projection (approximately M vs M/L) is indistinguishable from that of normal early-type galaxies. However -- within the fundamental plane -- the lens galaxies appear to concentrate at the edge of the region populated by normal early-type galaxies. We show that this is a result of our selection procedure (approximately velocity dispersion sigma>240km/s). We conclude that SLACS lenses are a fair sample of high velocity dispersion early-type galaxies. By comparing the central stellar velocity dispersion that of the best fit lens model, we find == =1.01+-0.02 with 0.065 rms scatter. We conclude that within the Einstein radii the SLACS lenses are very well approximated by isothermal ellipsoids, requiring a fine tuning of the stellar and dark matter distribution (bulge-halo ``conspiracy''). Interpreting the offset from the local FP in terms of evolution of the stellar mass-to-light ratio, we find for the SLACS lenses d log M/L_B/dz=-0.69+-0.08 (rms 0.11) consistent with the rate found for field early-type galaxies and with a scenario where most of the stars were formed at high redshift (>2) with secondary episodes of star formation providing less than ~10% of the stellar mass below z=1. We discuss star formation history and structural homogeneity in the context of formation mechanisms such as collisionless (``dry'') mergers. [Abridged]Comment: 2006, ApJ, 604, 622; 13 pages, 7 figures, 2 tables. Replaced Table 2, since the previous version was incorrectly sorted. Updated references. No changes in plots or content. More info available at SLACS website www.slacs.or

    Constraining global properties of the Draco dwarf spheroidal galaxy

    Full text link
    By fitting a flexible stellar anisotropy model to the observed surface brightness and line-of-sight velocity dispersion profiles of Draco we derive a sequence of cosmologically plausible two-component (stars + dark matter) models for this galaxy. The models are consistent with all the available observations and can have either cuspy Navarro-Frenk-White or flat-cored dark matter density profiles. The dark matter halos either formed relatively recently (at z~2...7) and are massive (up to ~5x10^9 M_Sun), or formed before the end of the reionization of the universe (z~7...11) and are less massive (down to ~7x10^7 M_Sun). Our results thus support either of the two popular solutions of the "missing satellites" problem of Lambda cold dark matter cosmology - that dwarf spheroidals are either very massive, or very old. We carry out high-resolution simulations of the tidal evolution of our two-component Draco models in the potential of the Milky Way. The results of our simulations suggest that the observable properties of Draco have not been appreciably affected by the Galactic tides after 10 Gyr of evolution. We rule out Draco being a "tidal dwarf" - a tidally disrupted dwarf galaxy. Almost radial Draco orbits (with the pericentric distance <15 kpc) are also ruled out by our analysis. The case of a harmonic dark matter core can be consistent with observations only for a very limited choice of Draco orbits (with the apocentric-to-pericentric distances ratio of <2.5).Comment: 18 pages, 14 figures; accepted by Ap

    Eye in hand robot calibration

    Full text link

    The black hole mass distribution in early-type galaxies: cusps in HST photometry interpreted through adiabatic black hole growth

    Full text link
    The surface brightness profiles of early-type galaxies have central cusps. Two characteristic profile types are observed with HST: `core' profiles have a break at a resolved radius and logarithmic cusp slope gamma < 0.3 inside that radius; `power-law' profiles have no clear break and gamma > 0.3. With few exceptions, galaxies with M_V -20.5 have power-law profiles. Both profile types occur in galaxies with -22 < M_V < -20.5. We show that these results are consistent with the hypothesis that: (i) all early-type galaxies have black holes (BHs) that grew adiabatically in homogeneous isothermal cores; and (ii) these `progenitor' cores followed scaling relations similar to those of the fundamental plane. The models studied here are the ones first proposed by Young. Models with BH masses and progenitor cores that obey established scaling relations predict (at Virgo) that galaxies with M_V < -21.2 have core profiles and galaxies with M_V > -21.2 have power-law profiles. This reproduces both the sense and the absolute magnitude of the observed transition. Intrinsic scatter in BH and galaxy properties can explain why both types of galaxies are observed around the transition magnitude. The observed bimodality in cusp slopes may be due to a bimodality in M_bh/L, with rapidly rotating disky galaxies having larger M_bh/L than slowly rotating boxy galaxies. Application to individual galaxies with HST photometry yields a roughly linear correlation between BH mass and V-band galaxy luminosity, log M_bh = -1.83 + log L (solar units). This agrees with the average relation for nearby galaxies with kinematically determined BH masses, and also with predictions from quasar statistics (shortened abstract).Comment: 41 pages, LaTeX, with 11 PostScript figures. Submitted to the Astronomical Journal. Postscript version also available from http://sol.stsci.edu/~marel/abstracts/abs_R23.htm

    Modelling of Transonic Shallow Cavity Flows, and Store Release Simulations from Weapon Bays

    Get PDF
    This paper aims to obtain more insight in the physics of cavit y flows. CFD results are analysed using a superposition of refle cted acoustic waves driven by the cavity flow showing clearly the r elative amplitude, and the time modulation of cavity tones. The tona l, and a part of the broadband noise, is found to be driven by the turb u- lent length scales, disabling the phase superposition of th e smaller wavelength. This can be seen as a way to complement the estab- lished Rossiter formula. In addition Scale-Adaptive Simul ations of store release from weapon bays using overset grids are prese nted. A six-degree-of-freedom model is coupled with the HMB3 flow so lver, and store release simulations are performed for a finned stor e inside an idealised bay. It is found that the trajectories of stores released from the cavities are affected by the mean flow field, the standin g waves, and the dynamics of the shear layer formed along the ca vity opening

    Bar Diagnostics in Edge-On Spiral Galaxies. II. Hydrodynamical Simulations

    Full text link
    We develop diagnostics based on gas kinematics to identify the presence of a bar in an edge-on spiral galaxy and determine its orientation. We use position-velocity diagrams (PVDs) obtained by projecting edge-on two-dimensional hydrodynamical simulations of the gas flow in a barred galaxy potential. We show that when a nuclear spiral is formed, the presence of a gap in the PVDs, between the signature of the nuclear spiral and that of the outer parts of the disk, reliably indicates the presence of a bar. This gap is due to the presence of shocks and inflows in the simulations, leading to a depletion of the gas in the outer bar region. If no nuclear spiral signature is present in a PVD, only indirect arguments can be used to argue for the presence of a bar. The shape of the signature of the nuclear spiral, and to a lesser extent that of the outer bar region, allows to determine the orientation of the bar with respect to the line-of-sight. The presence of dust can also help to discriminate between viewing angles on either side of the bar. Simulations covering a large fraction of parameter space constrain the bar properties and mass distribution of observed galaxies. The strongest constraint comes from the presence or absence of the signature of a nuclear spiral in the PVD.Comment: 25 pages (AASTeX, aaspp4.sty), 11 jpg figures. Accepted for publication in The Astrophysical Journal. Online manuscript with PostScript figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm

    Density Waves Inside Inner Lindblad Resonance: Nuclear Spirals in Disk Galaxies

    Get PDF
    We analyze formation of grand-design two-arm spiral structure in the nuclear regions of disk galaxies. Such morphology has been recently detected in a number of objects using high-resolution near-infrared observations. Motivated by the observed (1) continuity between the nuclear and kpc-scale spiral structures, and by (2) low arm-interarm contrast, we apply the density wave theory to explain the basic properties of the spiral nuclear morphology. In particular, we address the mechanism for the formation, maintenance and the detailed shape of nuclear spirals. We find, that the latter depends mostly on the shape of the underlying gravitational potential and the sound speed in the gas. Detection of nuclear spiral arms provides diagnostics of mass distribution within the central kpc of disk galaxies. Our results are supported by 2D numerical simulations of gas response to the background gravitational potential of a barred stellar disk. We investigate the parameter space allowed for the formation of nuclear spirals using a new method for constructing a gravitational potential in a barred galaxy, where positions of resonances are prescribed.Comment: 18 pages, 9 figures, higher resolution available at http://www.pa.uky.edu/~ppe/papers/nucsp.ps.g

    The properties of the Galactic bar implied by gas kinematics in the inner Milky Way

    Full text link
    Longitude-velocity (l-V) diagrams of H I and CO gas in the inner Milky Way have long been known to be inconsistent with circular motion in an axisymmetric potential. Several lines of evidence suggest that the Galaxy is barred, and gas flow in a barred potential could be consistent with the observed ``forbidden'' velocities and other features in the data. We compare the H I observations to l-V diagrams synthesized from 2-D fluid dynamical simulations of gas flows in a family of barred potentials. The gas flow pattern is very sensitive to the parameters of the assumed potential, which allows us to discriminate among models. We present a model that reproduces the outer contour of the H I l-V diagram reasonably well; this model has a strong bar with a semimajor axis of 3.6 kpc, an axis ratio of approximately 3:1, an inner Lindblad resonance (ILR), and a pattern speed of 42 km/s/kpc, and matches the data best when viewed from 34\deg to the bar major axis. The behavior of the models, combined with the constraint that the shocks in the Milky Way bar should resemble those in external barred galaxies, leads us to conclude that wide ranges of parameter space are incompatible with the observations. In particular we suggest that the bar must be fairly strong, must have an ILR, and cannot be too end-on, with the bar major axis at 35\deg +/- 5\deg to the line of sight. The H I data exhibit larger forbidden velocities over a wider longitude range than are seen in molecular gas; this important difference is the reason our favored model differs so significantly from other recently proposed models.Comment: 23 pages, 14 figures, 1 table, uses emulateapj and psfig, 640 kb. Submitted to Ap
    • 

    corecore