Distortion Isomerism of $\mathbf{C u}(\mathrm{II})$ Chloride Adducts with Bis (2-benzimidazolyl)ethane. Synthesis, Characterization, X-ray Structures and Spectroscopy of Four Different Isomers

Gerard A. van Albada - Ilpo Mutikainen -
Urho Turpeinen • Jan Reedijk

Received: 4 July 2006/Accepted: 2 April 2007/Published online: 3 May 2007
(C) Springer Science+Business Media, LLC 2007

Abstract

D structures and spectroscopic properties are reported of four compounds with the ligand bis(2-benzimidazolyl)ethane (hereafter abbreviated as dbz) attached to CuCl_{2}, all having the general formula $\left[\mathrm{Cu}(\mathrm{dbz}) \mathrm{Cl}_{2}\right](\mathrm{Hb})_{x}$. (in which $\mathrm{Hb}=\mathrm{EtOH}$ or MeOH and $x=1 / 2$ or 1). The X-ray crystal structure has been solved from these four slightly different compounds, namely: green $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{1 / 2}(\mathbf{1})$, the red compound $\beta-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{1 / 2}$ (2), which both have two slightly different units in the unit cell, the red $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ (3) and a blue-green compound $\beta-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ (4). The geometry around the $\mathrm{Cu}(\mathrm{II})$ anion is distorted tetrahedral for all four compounds, with chromophores consisting of two nitrogen atoms of the bidentate chelating dbz molecule and two chloride anions.

The unit cells of compound $\mathbf{1}$ and 2 consist of two chemically identical, but crystallographically different units, while compounds 3 and 4 each have only one independent $\mathrm{CuCl}_{2}-(\mathrm{dbz})$ unit. The major differences are observed in the dihedral angles $\mathrm{NCuN}-\mathrm{ClCuCl}$, which vary from 29.3 to 77.1° for the four compounds. The differences are related to different packing effects, ring-ring stacking and H -bond interaction, due to the two different alcohols used. In fact these four compounds represent a new range of examples of distortion isomerism in pseudo-tetrahedrally coordinated species. Characterisation of the four

[^0]compounds has been completed by IR, EPR and LF spectroscopy.

Keywords Copper(II) • Plasticity effect • Crystal structure • Distortion isomerism • Hydrogen bonding

Introduction

The coordination chemistry of the heterocyclic azoles acting as ligands in copper(II) compounds in the context of modelling biological systems has gained much interest in the past decades [1-4]. In this respect bis(2-benzimidazoles) have received much attention for their wide-ranging antivirus activity [5, 6], their importance in selective ionexchange resins [7, 8] and the possibility to form supramolecular aggregates with d^{10} metal ions [9].

So far, spectroscopic and magnetic properties, as well as X-ray structural analysis of a number of mono-, bis-, tetraand polynuclear copper(II) coordination compounds with bis(2-benzimidazolyl)alkanes and some substituted bis(2benzimidazolyl)alkanes have been reported by others and by us [10-20].

The copper(II) ion is known to yield in some cases different geometries with the same ligand. This has been coined as "plasticity effect'" [21-23] and is believed to results from the Jahn-Teller distortion of the Cu (II) ion. Several ligands are known to yield different (coloured) $\mathrm{Cu}(\mathrm{II})$ isomers of the same compound, which have been classified as distortion isomers, a phenomenon known for many years [24-26].

In our earlier research with the ligand bis(2-benzimidazolyl)propane (abbreviated as tbz), two different $\mathrm{Cu}(\mathrm{II})$ compounds, of formula $\left[\mathrm{Cu}(\mathrm{tbz}) \mathrm{Cl}_{2}\right]$, were obtained, i.e. a red isomer with a (distorted) tetrahedral geometry and a

Table 1 Crystal and refinement data

Compound	1	2	3	4
CCDC deposit nr.				
Molecular formula	$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}$	$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}$	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}$	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}$
Molecular weight	839.59	839.59	428.79	428.79
T (K)	173(2)	173(2)	173(2)	173(2)
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	P-1	P-1	P-1	P2(1)/c
$a($ A)	12.306(2)	9.2620	8.256(2)	6.994(1)
b (${ }_{\text {(}}$)	12.757(2)	12.660(3)	9.082(2)	13.802(3)
$c(\AA)$	13.742(3)	15.457(3)	12.331(2)	18.579(4)
$\alpha\left({ }^{\circ}\right)$	67.27(3)	89.55(3)	100.80(3)	90.0
$\beta\left({ }^{\circ}\right)$	63.76(3)	88.44(3)		95.33(3)
$\gamma\left({ }^{\circ}\right)$	84.65(3)	78.72(3)	94.57(3)	90.0
$V\left(\AA^{3}\right)$	1776.9(9)	1776.8(6)	878.0(3)	1785.7(6)
Z	2	2	2	4
F000	856	856	438	876
$D_{\text {cal }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.569	1.569	1.622	1.595
$\mu\left(\mathrm{mm}^{-1}\right)$	1.539	1.539	1.561	1.535
Crystal size (mm)	$0.20 \times 0.25 \times 0.25$	$0.30 \times 0.10 \times 0.07$	$0.20 \times 0.20 \times 0.04$	$0.25 \times 0.13 \times 0.13$
Colour, shape	green, block	red, needle	red, plate	bluegreen, block
θ range (${ }^{\circ}$)	2.9-27.5	2.8-27.0	3.16-27.50	2.20-27.55
Number of reflections collected	28,173	28,194	13,257	27,031
Number of unique reflections	$8110\left(\mathrm{R}_{\text {int }}=0.037\right)$	$7457\left(\mathrm{R}_{\text {int }}=0.065\right)$	4010 ($\left.\mathrm{R}_{\text {int }}=0.083\right)$	$4092\left(\mathrm{R}_{\text {int }}=0.1494\right)$
Number of ref. parameters	444	487	228	227
S (Goodness of fit)	0.95	1.048	1.009	0.991
Final R indices[$\mathrm{I}>2 \sigma(\mathrm{I})]$	$R 1=0.0294$	$R 1=0.0558$	$R 1=0.0518$	$R 1=0.0686$
	$w R 2=0.0731$	$w R 2=0.1313$	$w R 2=0.1177$	$w R 2=0.1622$
R indices (all data)	$R 1=0.0437$	$R 1=0.0895$	$R 1=0.0901$	$R 1=0.1404$
	$w R 2=0.0749$	$w R 2=0.1488$	$w R 2=0.1310$	$w R 2=0.1940$
Largest difference min, max (e \AA^{-3})	-0.59, 0.51	-0.99, 1.04	-0.82, 0.70	$-0.58,1.26$

$R=\sum\left\|F_{o}\left|-\left|F_{c}\left\|/ \sum \mid F_{o}\right\|, R_{w}=\left[\sum \mathrm{w}\left\{\left|F_{o}\right|-\left|F_{c}\right|\right\}^{2} / w\left|F_{o}\right|^{2}\right]^{1 / 2}\right.\right.\right.$
polymeric green isomer containing two different copper(II) sites, each distorted from square planar [14]. With a methyl substituent on different positions on the alkyl chain of tbz a number of copper(II) halide compounds were synthesized, however, no distortion isomers were reported in these cases [19].

In the present study a few other examples dealing with four CuCl_{2} distortion isomers are reported with the ligand bis(2-benzimidazolyl)ethane (abbreviated as dbz) having the general formula $\left[\mathrm{Cu}(\mathrm{dbz}) \mathrm{Cl}_{2}\right](\mathrm{Hb})_{x}$. (in which $\mathrm{Hb}=\mathrm{EtOH}$ or MeOH and $x=1 / 2$ or 1). The X-ray crystal structure has been solved from four different compounds, the green $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{1 / 2}$ (1) [27], the red $\beta-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{1 / 2}$ (2), the red $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ (3) and the blue-green compound $\beta-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ (4). The characterization was further done by spectroscopic methods and EPR. This study is a rare case of distortion isomerism in which four
different CuCl_{2} compounds with the same ligand is fully characterized, also by X-ray crystallography.

Experimental section

General

C, H, N determinations were performed on a Perkin Elmer 2400 Series II analyzer. Ligand field spectra were obtained on a Perkin-Elmer Lambda 900 spectrophotometer, using the diffuse reflectance technique, with MgO as a reference. X-band powder EPR spectra were obtained on a Jeol RE2x electron spin resonance spectrometer using DPPH ($g=2.0036$) as a standard. FTIR spectra were obtained on a Perkin Elmer Paragon 1000 FTIR spectrophotometer equipped with a Golden Gate ATR device, using the reflectance technique $\left(4,000-300 \mathrm{~cm}^{-1}\right.$, res. $\left.4 \mathrm{~cm}^{-1}\right)$.

Fig. 1 Thermal ellipsoid plot drawn at the 50\% probability level, of compound 1 with atom-labeling scheme. Hydrogen atoms and the non-coordinating ethanol molecule has been omitted for clarity

Synthesis of the coordination compounds
The compounds were prepared according to the following general procedure: $1.2 \mathrm{mmol}^{\text {of }} \mathrm{CuCl}_{2}$ and 1.2 mmol of the ligand dbz were each dissolved in 10 ml of methanol or ethanol. The $\mathrm{Cu}(\mathrm{II})$ salt solution was then added slowly to

Fig. 2 Thermal ellipsoid plot drawn at the 50\% probability level, of compound 2 with atom-labeling scheme. Hydrogen atoms and the non-coordinating ethanol molecule has been omitted for clarity. Only one modification of the disordered Cl atoms (attached to Cu 1 A) are shown

Fig. 3 Thermal ellipsoid plot drawn at the 50\% probability level, of compound $\mathbf{3}$ with atom-labeling scheme. Hydrogen atoms and the non-coordinating methanol molecule has been omitted for clarity

Fig. 4 Thermal ellipsoid plot drawn at the 50\% probability level, of compound $\mathbf{4}$ with atom-labeling scheme. Hydrogen atoms and the non-coordinating methanol molecule has been omitted for clarity
the ligand solution and filtered to remove any undissolved material. Usually after a few days the products separated as a mixture of red and green crystals for the ethanol solution or red and blue-green crystals for the methanol solution. The different coloured crystals were separated manually for spectroscopic measurements and X-ray crystallography.

Changing the $\mathrm{Cu} /$ ligand ratio appeared to have a small effect on the crystallisation of the different coloured products, but it was not possible to synthesize these isomers completely separately. Satisfactory elemental (C, H, N) analysis were obtained.

Crystal structure determination and refinement
A crystal was selected and mounted to a glass fiber using the oil-drop method; data were collected on a Nonius KappaCCD diffractometer (graphite-monochromated Mo$\mathrm{K} \alpha$ radiation). The intensity data were corrected for Lorentz and polarization effects, for absorption and for extinction. The structures were solved by direct methods. The programs COLLECT [28], SHELXS-97 [29], SHEL-XL-97 [30] were used for data reduction, structure solution and structure refinement, respectively. Refinement of F^{2}

Table 2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the four compounds

Compound	(1)	(2)	(3)	(4)
Cu1A-Cl1A	2.2664(7)	2.304(3)*	2.265(1)	2.279(2)
$\mathrm{Cu} 1 \mathrm{~A}-\mathrm{Cl} 1$		2.402(2)*		
Cu1A-Cl2A	2.2367(8)	2.152(3)*	2.255(1)	2.234(2)
$\mathrm{Cu} 1 \mathrm{~A}-\mathrm{Cl} 2$		2.319(3)*		
Cu1A-N2A	1.988(2)	1.801(5)	2.013(3)	$1.996(5)$
Cu1A-N4A	2.004(2)	$2.116(5)$	1.976(3)	2.007(4)
Cu1B-Cl1B	2.2724(9)	2.356(2)		
Cu1B-Cl2B	2.2371(8)	2.208(1)		
Cu1B-N2B	$1.9765(17)$	1.843(3)		
Cu1B-N4B	1.973(2)	2.141(4)		
Cl1A-Cu1A-Cl2A	95.62(4)	104.8(1)*	94.17(4)	94.11(6)
$\mathrm{Cl} 1-\mathrm{Cu} 1 \mathrm{~A}-\mathrm{Cl} 2$		95.43(9)*		
C11A-Cu1A-N2A	148.80(7)	109.2(2)*	128.9(1)	156.8(1)
Cl1-Cu1A-N2A		112.4(2)*		
C11A-Cu1A-N4A	91.21(6)	128.3(1)*	100.48(9)	90.5(1)
Cl1-Cu1A-N4A		104.4(1)*		
C12A-Cu1A-N2A	94.22(6)	116.1(2)*	96.9(1)	93.7(1)
$\mathrm{Cl} 2-\mathrm{Cu} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$		105.7(2)*		
C12A-Cu1A-N4A	151.33(7)	99.1(2)*	146.38(9)	161.3(1)
$\mathrm{Cl} 2-\mathrm{Cu} 1 \mathrm{~A}-\mathrm{N} 4 \mathrm{~A}$		138.6(2)*		
N2A-Cu1A-N4A	94.17(8)	99.8(2)	97.1(1)	89.1(2)
Cl2B-Cu1B-N4B	140.55(7)	98.2(1)		
N2B-Cu1B-N4B	94.68(8)	90.9(2)		
Cl1B-Cu1B-N4B	103.32(7)	140.0(1)		
Cl1B-Cu1B-Cl2B	98.64(4)	95.53(6)		
Cl1B-Cu1B-N2B	132.13(7)	103.4(1)		
Cl2B-Cu1B-N2B	94.33(7)	137.8(1)		
Hydrogen bonds:				
	D-H	H $\cdots \mathrm{A}$	D $\cdots \mathrm{A}$	D-H \cdots A
Structure (1):				
O1-H1A \cdots Cl1B [-1-x, -y, -z]	0.84	2.31	3.146(2)	173
N1A-H1AA \cdots Cl2B [$\mathrm{x}, 1+\mathrm{y},-1+\mathrm{z}$]	0.88	2.28	3.147(2)	169
N3A-H3AA \cdots Cl1A [$-1-\mathrm{x}, 1-\mathrm{y},-1-\mathrm{z}]$	0.88	2.56	3.248(2)	136**
N3A-H3AA \cdots O1 [$-1-\mathrm{x}, 1-\mathrm{y},-1-\mathrm{z}$]	0.88	2.43	3.131(3)	138**
N1B-H1BA \cdots Cl2A [$1+x, y, z]$	0.88	2.54	3.262(2)	140
N3B-H3BA $\cdots \mathrm{O} 1[1+x, y, z]$	0.88	1.98	2.830(3)	162
Structure (2):				
*O1-H1A \cdots N1B [1-x, 1-y, 1-z]	0.84	2.28	2.778(9)	119
N1A-H1AC \cdots Cl1B	0.88	2.43	3.210(5)	148
N3A-H3AA \cdots O3 [$\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$]	0.88	2.05	2.917(11)	167
N1B-H1BC \cdots O1 [1-x, 1-y, 1-z]	0.88	1.95	2.778(9)	156
N3B-H3BA \cdots Cl2B [1-x, 2-y, 1-z]	0.88	2.61	3.369(4)	145
Structure (3):				
O16-H16A \cdots Cl1 [1-x, 1-y, 1-z]	0.84	2.37	3.175(3)	160
N1-H1C ..O16	0.88	2.03	2.853(5)	154
N3-H3A \cdots Cl2 [1 + x, y, z]	0.88	2.60	3.406(4)	153
Structure (4):				
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{O}(18)[1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}]$	0.88	1.98	2.776(7)	150

Table 2 continued

Compound	(1)	(2)	(3)	(4)
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A}) \cdots \mathrm{Cl}(1)[1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}]$	0.88	2.50	$3.257(4)$	144
$\mathrm{O}(18)-\mathrm{H}(18 \mathrm{~A}) \cdots \mathrm{Cl}(2)[\mathrm{x}, 5 / 2-\mathrm{y}, 1 / 2+\mathrm{z}]$	0.84	2.66	$3.499(6)$	174

* disordered atom
** bifurcated H-bond
was done against all reflections. All non-hydrogen atoms were refined anisotropically. The ethanol molecule and the Cl atoms coordinated to the Cu 1 A atom in compound (2) were found in disordered positions. These disordered atoms were refined in the two positions with population parameter 0.5 . All H atoms were introduced in calculated positions and refined with fixed geometry with respect to their carrier atoms. Crystallographic data are presented in Table 1

Results and discussion

Description of the crystal structures

A thermal ellipsoid plot, together with the numbering scheme for the four compounds is shown in Figs. 1-4, for compounds 1 to 4 , respectively. The selected bond lengths and bond angles are given in Table 2.

The structure of compounds $\mathbf{1}$ and 2 contains two chemically almost identical, but crystallographically independent, CuCl_{2}-dbz units and one non-coordinating ethanol molecule, which is present in a disordered position for compound 2. In compound 2 also one of the two units contains the two chloride atoms in disordered positions, which appears to be related to the hydrogen-bonding interaction with the disordered ethanol. Compounds 3 and 4 have only one crystallographic unit and one non-coordinating methanol molecule.

Each copper(II) atom is tetrahedrally surrounded by two nitrogens of the chelating bidentate ligand and two chloride anions. The $\mathrm{Cu}-\mathrm{N}$ distances vary from 1.801(5) to 2.141(4) \AA and the $\mathrm{Cu}-\mathrm{Cl}$ distances vary from 2.152(3) to 2.279(2) \AA (the disordered $\mathrm{Cu}-\mathrm{Cl}$ distances are not considered), which are normal distances for CuCl_{2} tetrahedral compounds. The smallest tetrahedral angles $(\mathrm{N}-\mathrm{Cu}-\mathrm{N})$ of the 7 -membered chelate ring differs from $89.12(18)^{\circ}$ to $99.8(2)^{\circ}$ in the four compounds. Structural comparison of the four compounds is given in Table 3. The fact that in compound 2 the Cl atoms in one of the units is disordered makes it somewhat difficult to compare these compounds with each other.

One of the important differences is the dihedral angle between the $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ and the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ planes in the four compounds (see Table 3). These tetrahedral angles
differ significantly from the tetrahedral angles reported for the copper(II) halide compounds with tbz and methylated tbz (dihedral angles 62.52 and 65.43°); values of 90° would be expected for undistorted tetrahedral geometry, so the present compounds are more close to tetrahedral than the tbz or methylated tbz compounds, perhaps also influenced by the fact that tbz and methylated tbz compounds forms an eight-membered chelate ring [19], while the present compounds forms a sevenmembered chelate ring.

The lattice structure is additionally stabilized by stacking between the benzimidazole groups of different units (Ring-Ring distances are $3.552,3.416,3.500,3.451 \AA$, for compounds 1 to 4 , respectively). An extensive hydrogen bond system is present between the $\mathrm{N}-\mathrm{H}$ of the ligand and the chloride ions; between the $\mathrm{N}-\mathrm{H}$ and the oxygen atom of the alcohol molecule and between the oxygen atom of the alcohol molecule and the chloride ions. Details of the H bonds are given in Table 2. This great variety in H bonds is likely to be responsible for the different distortion isomers found.

Ligand field and infrared spectroscopy

The diffuse reflectance spectra of the powdered solids are given in Table 4, together with the EPR values. The compounds $\mathbf{1}$ to $\mathbf{3}$ show the typical tetrahedral-type ligand field spectrum of a very broad (split) band with a centre around $12.0-9.7 \times 10^{3} \mathrm{~cm}^{-1}$, whereas compound 4 has a very broad band centred around $15.0 \times 10^{3} \mathrm{~cm}^{-1}$, which are known to be in the common range of absorptions for (square-planar distorted) tetrahedral copper(II) compounds [14, 19, 31].

The infrared spectra of the four compounds show only some differences in the characteristic benzimidazole $\mathrm{C}-\mathrm{H}$ bending vibrations in the $700-800 \mathrm{~cm}^{-1}$ area. The benz-imidazole-CH bending vibrations between $750-720 \mathrm{~cm}^{-1}$ are known to be very sensitive to structure differences and orientations of the benzene part of the molecule in the lattice [32]. In the dbz free ligand the imidazole bending vibration is observed at $775 \mathrm{~cm}^{-1}$ and the benzimidazole CH-out-of-plane bending at 750 and $739 \mathrm{~cm}^{-1}$ [32a].

These infrared vibrations in compound $\mathbf{1}$ are observed at $761,753,750,744$ and $736 \mathrm{~cm}^{-1}$; the two red compounds,
Table 3 Structural comparision of the four distortion isomers

Compound	Colour	$\mathrm{Cu}-\mathrm{N}$ dist. $(\AA \mathrm{A})$	$\mathrm{Cu}-\mathrm{Cl}$ dist. $(\AA \mathrm{A})$	$\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ angle $\left({ }^{\circ}\right)$	$\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angle $\left({ }^{\circ}\right)$	Dihedral angle $\left({ }^{\circ}\right)$
1. $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) *$	green	$1.973(2)-2.004(2)$	$2.2367(8)-2.2724(9)$	$95.62(4) 98.64(4)$	$94.17(8) 94.68(8)$	$41.01(9) 59.47(9)$
2. $\beta-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) *$	red	$1.801(5)-2.141(4)$	$2.152(3)-2.402(2)^{* *}$	$95.43(9) / 104.8(1) * *$	$99.8(2) 90.9(2)$	$76.6(3) / 77.1(2) 57.6(2)$
3. $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	red	$1.976(3)-2.013(3)$	$2.2550(1)-2.265(1)$	$94.17(4)$	$59.1(1)$	$89.1(2)$
4. $\beta-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	Blue-green	$1.996(5)-2.007(4)$	$2.234(2)-2.279(2)$	$94.11(6)$	$29.3(2)$	

* two crystallographic independent Cu units present in the unit cell

2 and 3 have almost the same pattern, bands at 761, 753, $746,733 \mathrm{~cm}^{-1}$ (compound 2) and 762, $753,747,733 \mathrm{~cm}^{-1}$ (for compound 3). The blue-green compound 4 has a pattern of three vibrations at 764,757 and $752 \mathrm{~cm}^{-1}$. The ligand $\mathrm{N}-\mathrm{H}$ stretches vary for each of the compounds ($3,464-3,000 \mathrm{~cm}^{-1}$), which is related to their hydrogen bonding situation [34]. The bands are, however, too broad to allow a study with comparision of H -bond distances, also because of the lattice EtOH and MeOH OH -stretching vibrations, which occur in the same region.

EPR

X-band EPR spectra of polycrystalline powders of the complexes were recorded at room temperature and 77 K . The resolution did not improve very much upon cooling to 77 K. As shown in Table 2 the compounds show an axial $\mathrm{S}=1 / 2$ signal with a g_{\perp} at $2.11-2.07$ and an unresolved $g_{/ /}$ value in the range of $2.23-2.32$. EPR measurements as frozen solutions ($\mathrm{DMSO} / \mathrm{MeOH}$ mixtures) resulted in resolved spectra with g_{\perp} of $2.07, g_{/ /} 2.32$ and $\mathrm{A}_{/ /}$between 12.7-14.4. These values differ from the earlier reported CuCl_{2}-(tbz) compounds which show in similar solutions solution a trigonal-bipyramidal geometry; perhaps some dmso is coordinating to the metal of the CuCl_{2}-(tbz), thereby changing the spectral parameters [14]. The g values obtained are nevertheless in the usual range for copper in a (distorted) tetrahedral environment $[14,16,19,21]$.

Conclusion

The present study has provided four new samples of $\mathrm{Cu}(\mathrm{II})$ distortion isomeric compounds with the ligand dbz. So far only a few examples of CuCl_{2}-based distortion isomers are known which have been fully characterized by X-ray analysis [14, 26d, h], and the present species are the first examples in which four different compounds of the same ligand and metal salt and the same chromophore are fully characterized by X-ray crystallography. All compounds exhibit a more or less distorted tetrahedral environment and a seven-membered chelate ring is formed. The tetrahedral angles $(\mathrm{N}-\mathrm{Cu}-\mathrm{N})$ of the chelate rings are close to the calculated value $\left(101.3^{\circ}\right)$ for 7 -membered chelate rings [33].

The difference in the dihedral angles for the various isomers can be understood on the basis of different hydrogen bonding due to the fact of two different solvents and differences in packing due to ring-ring stacking, thereby illustrating that the energy differences are small. Another interesting fact is that in compound (2) the

Table 4 Ligand field/EPR of the four Cu distortion isomeric

Compound	Colour	LF $\left(\times 10^{3} \mathrm{~cm}^{-1}\right)^{\mathrm{a}}$	EPR solid, RT		EPR (frozen. sol) $77 \mathrm{~K}^{\text {b }}$		
			g_{\perp}	g//	g_{\perp}	g//	$A_{\text {// }}$
1. $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$	green	9.7 (br,sh) 12.1	2.08	2.29	2.07	2.32	13.9
2. $\beta-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$	red	9.7 (vbr)	2.11	2.32	2.07	2.32	14.4
3. $\alpha-\left[\mathrm{CuCl}_{2} \mathrm{dbz}\right]\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	red	9.5 (br)	2.09	2.30	2.07	2.32	13.7
4. β-[CuCl $\left.\mathrm{C}_{2} \mathrm{dbz}\right]\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	blue-green	$11.1(\mathrm{sh}) 15.0$ (vbr)	2.07	2.23	2.07	2.32	14.1

${ }^{\text {a }}$ abbreviations: $\mathrm{vbr}=$ very broad, $\mathrm{br}=$ broad, $\mathrm{sh}=$ shoulder
${ }^{\mathrm{b}}$ frozen solution mixture DMSO/Methanol 1:1; $A_{/ /}$in mT
chloride anions are disordered, the reason for that is still unknown.

Supplementary material

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC: 602249, 602250, 602251 and 602252, for compounds 1 to 4 , respectively. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax:int code $+44(1223) 336-033$, E-mail: deposit@ccdc.cam.ac.uk).

Acknowledgements The work described in the present paper has been supported by the Leiden University Study group WFMO (Werkgroep Fundamenteel Materialen Onderzoek).Financial support and coordination by the FP6 Network of Excellence "Magmanet' (contract number 515767) is kindly acknowledged.

References

1. Reedijk J (1987) In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry, Pergamon Press, 2:73
2. Bouwman E, Driessen WL, Reedijk J (1990) Coord Chem Rev 104:143
3. Sorrell TN (1989) Tetrahedron $45: 3$
4. Zanello P, Tamburini S, Vigato PA, Mazzocchin GA (1987) Coord Chem Rev 77:165
5. Çakir B, Büyükbingöl E, Uçucu Ü, Abbasoglu U, Noyanalpan N (1988) J Fac Pharm Gazi 5:71
6. Roderick WR, Nordeen CW Jr, Esch AM, Appell von RN (1972) J Med Chem 15:655
7. Hoorn HJ, Joode P de, Driessen WL, Reedijk J (1995) React Funct Polym 27:223
8. Berkel PM van, Dijkstra DJ, Driessen WL, Reedijk J, Sherrington DC (1995) React Funct Polym 28:39
9. Piquet C, Bünzli J-CG, Bernardinelli G, Hopfgartner G, Williams AF (1995) J Alloys Comp 225:324
10. Bernardinelli G, Kübel-Pollak A, Rüttimann S, Williams AF (1992) Chimia 46:155
11. Bernardinelli G, Kübel-Pollak A, Rüttimann S, Williams AF (1993) Zeitschrift Kristallogr 203:132
12. Albada GA van, Lakin MT, Veldman N, Spek AL, Reedijk J (1995) Inorg Chem 34:4910
13. Albada GA van, Smeets WJJ, Spek AL, Reedijk J (1997) Inorg Chim Acta 260:151
14. Albada GA van, Smeets WJJ, Spek AL, Reedijk J (1999) Inorg Chim Acta 288:220
15. Albada GA van, Smeets WJJ, Veldman N, Spek AL, Reedijk J (1999) Inorg Chim Acta 290:105
16. Albada GA van, Smeets WJJ, Spek AL, Reedijk J (2000) Inorg Chim Acta 299:35
17. Albada GA van, Veldman N, Spek AL, Reedijk J (2000) Chem Crystallogr 30:69
18. Albada GA van, Riggio I, Mutikainen I, Turpeinen U, Reedijk J (2000) Chem Cryst 30:793
19. Riggio I, Albada GA van, Ellis DD, Mutikainen I, Spek AL, Turpeinen U, Reedijk J, (2001) Polyhedron 20:2659
20. Albada GA van, Mutikainen I, Riggio I, Turpeinen U, Reedijk J (2002) Polyhedron 21:141
21. Hathaway BJ (1987) In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry,vol 5, Pergamon, Oxford
22. Gažo J, Bersuker IB, Garaj J, Kabešová M, Kohout J, Langfelderová H, Melník M, Serátor M, Valach F (1976) Coord Chem Rev 19:253
23. Palaniandavar M, Butcher RJ, Addison AW (1996) Inorg Chem 35:467
24. Gažo J (1974) Pure Appl Chem 38:279
25. Melník M (1982) Coord Chem Rev 47:239
26. (a) Haddad SF, Pickardt J (1993) Transition Met Chem 18:377; (b)Foley J, Tyagi S, Hathaway BJ (1984) J Chem Soc, Dalton Trans 1; (c) Baran P, Koman M, Valigura D, Mroziński J (1991) J Chem Soc, Dalton Trans 1385; (d) Kelly PF, Slawin AMZ, Waring KW (1997) J Chem Soc, Dalton Trans 2853; (e) Pajunen A, Smolander K, Belinskij I (1972) Suomen Kemistilehti B45:317; (f) Glass RS, Sabahi M, Hojjatie M, Wilson GS (1987) Inorg Chem 26:2196; (g) Haanstra WG, Donk WAJW van der, Driessen WL, Reedijk J, Wood JS, Drew MGB (1990) J Chem Soc, Dalton Trans 3123; (h) Langfelderová H, Macásková L, Melník M, Kabešová M, Gažo J (1978) Z Anorg Allg Chem 445:233
27. The X-ray structure of compound 1 was measured for the first time in 1995, but with a significantly higher R-value (see CSD reference ESIHIX, Spek AL, Veldman N, Albada GAvan, Reedijk J Private Comm) Current data are more accurate
28. Nonius, 2002 COLLECT Nonius BV, Delft, The Netherlands
29. Sheldrick, GM SHELXS-97, Program for crystal structure determination, University of Göttingen, Germany, 1997
30. Sheldrick, GM (1997) SHELXL-97 Program for the Refinement of Crystal Structures University of Göttingen, Germany
31. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd Ed, Elsevier, Amsterdam
32. (a) Drolet DP, Manuta DM, Lees AJ, Katnani AD, Coyle GJ (1988) Inorg Chim Acta 146:173; (b) Boinnard D, Cassoux P, Petrouleas V, Savariault J-M, Tuchagues J-P (1990) Inorg Chem

29:4114; (c) Cordes MM, Walter JL (1968) Spectrochim Acta 24A:1421
33. Broughton V, Bernardinelli G, Williams AF (1998) Inorg Chim Acta 275:276-279
34. Bellamy LJ, Owen AJ (1969) Spectr Chim Acta 25A:329

[^0]: G. A. van Albada • J. Reedijk (\triangle)

 Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
 e-mail: reedijk@chem.leidenuniv.nl
 I. Mutikainen • U. Turpeinen

 Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, A.I.Virtasenaukio 1, 00014 Helsinki, Finland

