169 research outputs found

    Thio-linked UDP-peptide conjugates as O-GlcNAc transferase inhibitors

    Get PDF
    O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC­(S-propyl-UDP)­TA (<i>K</i><sub>i</sub> = 1.3 ÎŒM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay

    Analysis of the LKB1-STRAD-MO25 complex

    Get PDF
    Mutations in the LKB1 tumour suppressor threonine kinase cause the inherited Peutz-Jeghers cancer syndrome and are also observed in some sporadic cancers. Recent work indicates that LKB1 exerts effects on metabolism, polarity and proliferation by phosphorylating and activating protein kinases belonging to the AMPK subfamily. In vivo, LKB1 forms a complex with STRAD, an inactive pseudokinase, and MO25, an armadillo repeat scaffolding-like protein. Binding of LKB1 to STRAD-MO25 activates LKB1 and re-localises it from the nucleus to the cytoplasm. To learn more about the inherent properties of the LKB1-STRAD-MO25 complex, we first investigated the activity of 34 point mutants of LKB1 found in human cancers and their ability to interact with STRAD and MO25. Interestingly, 12 of these mutants failed to interact with STRAD-MO25. Performing mutagenesis analysis, we defined two binding sites located on opposite surfaces of MO25α, which are required for the assembly of MO25α into a complex with STRADα and LKB1. In addition, we demonstrate that LKB1 does not require phosphorylation of its own T-loop to be activated by STRADα-MO25α, and discuss the possibility that this unusual mechanism of regulation arises from LKB1 functioning as an upstream kinase. Finally, we establish that STRADα, despite being catalytically inactive, is still capable of binding ATP with high affinity, but that this is not required for activation of LKB1. Taken together, our findings reinforce the functional importance of the binding of LKB1 to STRAD, and provide a greater understanding of the mechanism by which LKB1 is regulated and activated through its interaction with STRAD and MO25

    Visualizing the Reaction Coordinate of an O-GlcNAc Hydrolase

    Get PDF
    N-Acetylglucosamine ÎČ-O-linked to serine and threonine residues of nucleocytoplasmic proteins (O-GlcNAc) has been linked to neurodegeneration, cellular stress response, and transcriptional regulation. Removal of&nbsp;O-GlcNAc is catalyzed by&nbsp;O-GlcNAcase (OGA) using a substrate-assisted catalytic mechanism. Here we define the reaction coordinate using chemical approaches and directly observe both a Michaelis complex and the oxazoline intermediate

    Lead optimization of a pyrazole sulfonamide series of trypanosoma brucei N -myristoyltransferase inhibitors:Identification and evaluation of CNS penetrant compounds as potential treatments for stage 2 human african trypanosomiasis

    Get PDF
    [Image: see text] Trypanosoma bruceiN-myristoyltransferase (TbNMT) is an attractive therapeutic target for the treatment of human African trypanosomiasis (HAT). From previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although this compound represents an excellent lead, poor central nervous system (CNS) exposure restricts its use to the hemolymphatic form (stage 1) of the disease. With a clear clinical need for new drug treatments for HAT that address both the hemolymphatic and CNS stages of the disease, a chemistry campaign was initiated to address the shortfalls of this series. This paper describes modifications to the pyrazole sulfonamides which markedly improved blood–brain barrier permeability, achieved by reducing polar surface area and capping the sulfonamide. Moreover, replacing the core aromatic with a flexible linker significantly improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS) mouse model of HAT

    Blood Pressure Lowering With Nilvadipine in Patients With Mild-to-Moderate Alzheimer Disease Does Not Increase the Prevalence of Orthostatic Hypotension

    Get PDF
    BACKGROUND: Hypertension is common among patients with Alzheimer disease. Because this group has been excluded from hypertension trials, evidence regarding safety of treatment is lacking. This secondary analysis of a randomized controlled trial assessed whether antihypertensive treatment increases the prevalence of orthostatic hypotension (OH) in patients with Alzheimer disease. METHODS AND RESULTS: Four hundred seventy‐seven patients with mild‐to‐moderate Alzheimer disease were randomized to the calcium‐channel blocker nilvadipine 8 mg/day or placebo for 78 weeks. Presence of OH (blood pressure drop ≄20/≄10 mm Hg after 1 minute of standing) and OH‐related adverse events (dizziness, syncope, falls, and fractures) was determined at 7 follow‐up visits. Mean age of the study population was 72.2±8.2 years and mean Mini‐Mental State Examination score was 20.4±3.8. Baseline blood pressure was 137.8±14.0/77.0±8.6 mm Hg. Grade I hypertension was present in 53.4% (n=255). After 13 weeks, blood pressure had fallen by −7.8/−3.9 mm Hg for nilvadipine and by −0.4/−0.8 mm Hg for placebo (P<0.001). Across the 78‐week intervention period, there was no difference between groups in the proportion of patients with OH at a study visit (odds ratio [95% CI]=1.1 [0.8–1.5], P=0.62), nor in the proportion of visits where a patient met criteria for OH, corrected for number of visits (7.7±13.8% versus 7.3±11.6%). OH‐related adverse events were not more often reported in the intervention group compared with placebo. Results were similar for those with baseline hypertension. CONCLUSIONS: This study suggests that initiation of a low dose of antihypertensive treatment does not significantly increase the risk of OH in patients with mild‐to‐moderate Alzheimer disease. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02017340

    Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity

    Get PDF
    Ubiquitination is initiated by transfer of ubiquitin (Ub) from a ubiquitin-activating enzyme (E1) to a ubiquitin-conjugating enzyme (E2), producing a covalently linked intermediate (E2-Ub)(1). Ubiquitin ligases (E3s) of the 'really interesting new gene' (RING) class recruit E2-Ub via their RING domain and then mediate direct transfer of ubiquitin to substrates(2). By contrast, 'homologous to E6-AP carboxy terminus' (HECT) E3 ligases undergo a catalytic cysteine-dependent transthiolation reaction with E2-Ub, forming a covalent E3-Ub intermediate(3,4). Additionally, RING-between-RING (RBR) E3 ligases have a canonical RING domain that is linked to an ancillary domain. This ancillary domain contains a catalytic cysteine that enables a hybrid RING-HECT mechanism(5). Ubiquitination is typically considered a post-translational modification of lysine residues, as there are no known human E3 ligases with non-lysine activity. Here we perform activity-based protein profiling of HECT or RBR-like E3 ligases and identify the neuron-associated E3 ligase MYCBP2 (also known as PHR1) as the apparent single member of a class of RING-linked E3 ligase with esterification activity and intrinsic selectivity for threonine over serine. MYCBP2 contains two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Crystallographic characterization of this class of E3 ligase, which we designate RING-Cys-relay (RCR), provides insights into its mechanism and threonine selectivity. These findings implicate non-lysine ubiquitination in cellular regulation of higher eukaryotes and suggest that E3 enzymes have an unappreciated mechanistic diversity

    A mutant O-GlcNAcase enriches Drosophila developmental regulators

    Get PDF
    YesProtein O-GlcNAcylation is a reversible post-translational modification of serines/threonines on nucleocytoplasmic proteins. It is cycled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (O-GlcNAcase or OGA). Genetic approaches in model organisms have revealed that protein O-GlcNAcylation is essential for early embryogenesis. Drosophila melanogaster OGT/supersex combs (sxc) is a polycomb gene, null mutants of which display homeotic transformations and die at the pharate adult stage. However, the identities of the O-GlcNAcylated proteins involved, and the underlying mechanisms linking these phenotypes to embryonic development, are poorly understood. Identification of O-GlcNAcylated proteins from biological samples is hampered by the low stoichiometry of this modification and limited enrichment tools. Using a catalytically inactive bacterial O-GlcNAcase mutant as a substrate trap, we have enriched the O-GlcNAc proteome of the developing Drosophila embryo, identifying, amongst others, known regulators of Hox genes as candidate conveyors of OGT function during embryonic development.Wellcome Trust Investigator Award (110061); MRC grant (MC_UU_12016/5); and Royal Society Research Grant

    Gait speed, cognition and falls in people living with mild-to-moderate Alzheimer disease: Data from NILVAD

    Get PDF
    Background: Previous evidence suggests that slower gait speed is longitudinally associated with cognitive impairment, dementia and falls in older adults. Despite this, the longitudinal relationship between gait speed, cognition and falls in those with a diagnosis of dementia remains poorly explored. We sought to assess this longitudinal relationship in a cohort of older adults with mild to-moderate Alzheimer Disease (AD). Methods: Analysis of data from NILVAD, an 18-month randomised-controlled trial of Nilvadipine in mild to moderate AD. We examined: (i) the cross-sectional (baseline) association between slow gait speed and cognitive function, (ii) the relationship between baseline slow gait speed and cognitive function at 18 months (Alzheimer Disease Assessment Scale, Cognitive Subsection: ADAS-Cog), (iii) the relationship between baseline cognitive function and incident slow gait speed at 18 months and finally (iv) the relationship of baseline slow gait speed and incident falls over the study period. Results: Overall, one-tenth (10.03%, N = 37/369) of participants with mild-to-moderate AD met criteria for slow gait speed at baseline and a further 14.09% (N = 52/369) developed incident slow gait speed at 18 months. At baseline, there was a significant association between poorer cognition and slow gait speed (OR 1.05, 95% CI 1.01-1.09, p = 0.025). Whilst there was no association between baseline slow gait speed and change in ADAS-Cog score at 18 months, a greater cognitive severity at baseline predicted incident slow gait speed over 18 months (OR 1.04, 1.01-1.08, p = 0.011). Further, slow gait speed at baseline was associated with a significant risk of incident falls over the study period, which persisted after covariate adjustment (IRR 3.48, 2.05-5.92, p < 0.001). Conclusions: Poorer baseline cognition was associated with both baseline and incident slow gait speed. Slow gait speed was associated with a significantly increased risk of falls over the study period. Our study adds further evidence to the complex relationship between gait and cognition in this vulnerable group and highlights increased falls risk in older adults with AD and slow gait speed. Trial registration: Secondary analysis of the NILVAD trial (Clincaltrials.gov NCT02017340; EudraCT number 2012-002764-27). First registered: 20/12/2013
    • 

    corecore