166 research outputs found

    High-Resolution Mapping Reveals Links of HP1 with Active and Inactive Chromatin Components

    Get PDF
    Heterochromatin protein 1 (HP1) is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and the DNA adenine methyltransferase identification (DamID) technique. The resulting high-resolution maps show that HP1 forms large domains in pericentric regions, but is targeted to single genes on chromosome arms. Intriguingly, HP1 shows a striking preference for exon-dense genes on chromosome arms. Furthermore, HP1 binds along entire transcription units, except for 5′ regions. Comparison with expression data shows that most of these genes are actively transcribed. HP1 target genes are also marked by the histone variant H3.3 and dimethylated histone 3 lysine 4 (H3K4me2), which are both typical of active chromatin. Interestingly, H3.3 deposition, which is usually observed along entire transcription units, is limited to the 5′ ends of HP1-bound genes. Thus, H3.3 and HP1 are mutually exclusive marks on active chromatin. Additionally, we observed that HP1-chromatin and Polycomb-chromatin are nonoverlapping, but often closely juxtaposed, suggesting an interplay between both types of chromatin. These results demonstrate that HP1-chromatin is transcriptionally active and has extensive links with several other chromatin components

    Genome–nuclear lamina interactions: from cell populations to single cells

    Get PDF
    Lamina-associated domains (LADs) are large genomic regions that interact with the nuclear lamina (NL) and help to guide the spatial folding of chromosomes in the interphase nucleus. LADs have been linked to gene repression and other functions. Recent studies have begun to uncover some of the molecular players that drive LAD–NL interactions. A picture emerges in which DNA sequence, chromatin components and nuclear lamina proteins play an important role. Complementary to this, imaging and single-cell genomics approaches have revealed that some LAD–NL interactions are variable from cell to cell, while others are very stable. Understanding LADs can provide a unique perspective into the general process of genome organization

    A short guide to technology development in cell biology

    Get PDF
    New technologies drive progress in many research fields, including cell biology. Much of technological innovation comes from "bottom-up" efforts by individual students and postdocs. However, technology development can be challenging, and a successful outcome depends on many factors. This article outlines some considerations that are important when embarking on a technology development project. Despite the challenges, developing a new technology can be extremely rewarding and could lead to a lasting impact in a given field

    Defining the fine structure of promoter activity on a genome-wide scale with CISSECTOR

    Get PDF
    Classic promoter mutagenesis strategies can be used to study how proximal promoter regions regulate the expression of particular genes of interest. This is a laborious process, in which the smallest sub-region of the promoter still capable of recapitulating expression in an ectopic setting is first identified, followed by targeted mutation of putative transcription factor binding sites. Massively parallel reporter assays such as survey of regulatory elements (SuRE) provide an alternative way to study millions of promoter fragments in parallel. Here we show how a generalized linear model (GLM) can be used to transform genome-scale SuRE data into a high-resolution genomic track that quantifies the contribution of local sequence to promoter activity. This coefficient track helps identify regulatory elements and can be used to predict promoter activity of any sub-region in the genome. It thus allows in silico dissection of any promoter in the human genome to be performed. We developed a web application, available at cissector.nki.nl, that lets researchers easily perform this analysis as a starting point for their research into any promoter of interest.</p

    Binding of corticosteroid receptors to rat hippocampus nuclear matrix

    Get PDF
    AbstractIn rat hippocampus, the mineralocorticoid receptor and the glucocorticoid receptor bind corticosterone with high affinity. We have studied the association of these receptors with the nuclear matrix both after in vivo and in vitro administration of radiolabelled corticosterone to hippocampus cells. It was found that in vivo 100% and in vitro 60% of the corticosterone that specifically bound to rat hippocampus nuclei was attached to the nuclear matrix. A selective glucocorticoid receptor agonist did not compete for corticosterone binding. This indicates that this binding was mediated by the mineralocorticoid receptor rather than the glucocorticoid receptor

    High-throughput assessment of context-dependent effects of chromatin proteins

    Get PDF
    Background: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy based on barcoded randomly integrated reporters with Gal4-mediated tethering. We applied the assay to Drosophila heterochromatin protein 1a (HP1a), which is mo

    Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence

    Get PDF
    In metazoans, the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes, by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific, while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps, we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover, cLADs are depleted of synteny breakpoints, pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically, the overall sequence conservation is low for cLADs. Instead, cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this “A/T rule” in embryonic stem cells, but not in differentiated cells. This suggests that the A/T rule represents a default positioning mechanism that is locally overruled during lineage commitment. Analysis of paralogs suggests that during evolution changes in A/T content have driven the relocation of genes to and from the nuclear lamina, in tight association with changes in expression level. Taken together, these results reveal that the spatial organization of mammalian genomes is highly conserved and tightly linked to local nucleotide composition
    • …
    corecore