18,249 research outputs found

    Peculiarities of neutron waveguides with thin Gd layer

    Get PDF
    Peculiarities of the formation of a neutron enhanced standing wave in the structure with a thin highly absorbing layer of gadolinium are considered in the article. An analogue of the poisoning effect well known in reactor physics was found. The effect is stronger for the Nb/Gd/Nb system. Despite of this effect, for a Nb/Gd bilayer and a Nb/Gd/Nb trilayer placed between Al2O3 substrate and Cu layer, it is shown theoretically and experimentally that one order of magnitude enhancement of neutron density is possible in the vicinity of the Gd layer. This enhancement makes it possible to study domain formation in the Gd layer under transition of the Nb layer(s) into the superconducting state (cryptoferromagnetic phase).Comment: 5 pages, 2 figure

    Effect of Cr spacer on structural and magnetic properties of Fe/Gd multilayers

    Full text link
    In this work we analyse the role of a thin Cr spacer between Fe and Gd layers on structure and magnetic properties of a [Fe(35A)/Cr(tCr)/Gd(50A)/Cr(tCr)]x12 superlattice. Samples without the Cr spacer (tCr=0) and with a thin tCr=4A are investigated using X-ray diffraction, polarized neutron and resonance X-ray magnetic reflectometry, SQUID magnetometery, magneto-optical Kerr effect and ferromagnetic resonance techniques. Magnetic properties are studied experimentally in a wide temperature range 4-300K and analysed theoretically using numerical simulation on the basis of the mean-field model. We show that a reasonable agreement with the experimental data can be obtained considering temperature dependence of the effective field parameter in gadolinium layers. The analysis of the experimental data shows that besides a strong reduction of the antiferromagnetic coupling between Fe and Gd, the introduction of Cr spacers into Fe/Gd superlattice leads to modification of both structural and magnetic characteristics of the ferromagnetic layers

    Coalescence and Anti-Coalescence Interference of Two-Photon Wavepacket in a Beam Splitter

    Get PDF
    We study a general theory on the interference of two-photon wavepacket in a beam splitter (BS). We find that the perfect coalescence interference requires a symmetric spectrum of two-photon wavepacket which can be entangled or un-entangled. Furthermore, we introduce a two-photon wavepacket with anti-symmetric spectrum, which is related with photon entanglement and shows a perfect anti-coalescence effect. The theory present uniform and complete explanation to two-photon interference.Comment: 5 pages, 2 figure

    Iron isotope effect on the superconducting transition temperature and the crystal structure of FeSe_1-x

    Full text link
    The Fe isotope effect (Fe-IE) on the transition temperature T_c and the crystal structure was studied in the Fe chalcogenide superconductor FeSe_1-x by means of magnetization and neutron powder diffraction (NPD). The substitution of natural Fe (containing \simeq 92% of ^{56}Fe) by its lighter ^{54}Fe isotope leads to a shift of T_c of 0.22(5)K corresponding to an Fe-IE exponent of \alpha_Fe=0.81(15). Simultaneously, a small structural change with isotope substitution is observed by NDP which may contribute to the total Fe isotope shift of T_c.Comment: 4 pages, 3 figure

    Ultrafast control of inelastic tunneling in a double semiconductor quantum

    Full text link
    In a semiconductor-based double quantum well (QW) coupled to a degree of freedom with an internal dynamics, we demonstrate that the electronic motion is controllable within femtoseconds by applying appropriately shaped electromagnetic pulses. In particular, we consider a pulse-driven AlxGa1-xAs based symmetric double QW coupled to uniformly distributed or localized vibrational modes and present analytical results for the lowest two levels. These predictions are assessed and generalized by full-fledged numerical simulations showing that localization and time-stabilization of the driven electron dynamics is indeed possible under the conditions identified here, even with a simultaneous excitations of vibrational modes.Comment: to be published in Appl.Phys.Let

    Numerical Bifurcation Analysis of Conformal Formulations of the Einstein Constraints

    Full text link
    The Einstein constraint equations have been the subject of study for more than fifty years. The introduction of the conformal method in the 1970's as a parameterization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental non-uniqueness problems with the conformal method as a parameterization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods.Comment: 13 pages, 4 figures. Final revision for publication, added material on physical implication

    Rare events, escape rates and quasistationarity: some exact formulae

    Full text link
    We present a common framework to study decay and exchanges rates in a wide class of dynamical systems. Several applications, ranging form the metric theory of continuons fractions and the Shannon capacity of contrained systems to the decay rate of metastable states, are given

    Magnetic and Superconducting Phase Diagram of Nb/Gd/Nb trilayers

    Get PDF
    We report on a study of the structural, magnetic and superconducting properties of Nb(25nm)/Gd(dfd_f)/Nb(25nm) hybrid structures of a superconductor/ ferromagnet (S/F) type. The structural characterization of the samples, including careful determination of the layer thickness, was performed using neutron and X-ray scattering with the aid of depth sensitive mass-spectrometry. The magnetization of the samples was determined by SQUID magnetometry and polarized neutron reflectometry and the presence of magnetic ordering for all samples down to the thinnest Gd(0.8nm) layer was shown. The analysis of the neutron spin asymmetry allowed us to prove the absence of magnetically dead layers in junctions with Gd interlayer thickness larger than one monolayer. The measured dependence of the superconducting transition temperature Tc(df)T_c(d_f) has a damped oscillatory behavior with well defined positions of the minimum at dfd_f=3nm and the following maximum at dfd_f=4nm; the behavior, which is in qualitative agreement with the prior work (J.S. Jiang et al, PRB 54, 6119). The analysis of the Tc(df)T_c(d_f) dependence based on Usadel equations showed that the observed minimum at dfd_f=3nm can be described by the so called "00" to "π\pi" phase transition of highly transparent S/F interfaces with the superconducting correlation length ξf4\xi_f \approx 4nm in Gd. This penetration length is several times higher than for strong ferromagnets like Fe, Co or Ni, simplifying thus preparation of S/F structures with dfξfd_f \sim \xi_f which are of topical interest in superconducting spintronics

    Semi-classical calculations of the two-point correlation form factor for diffractive systems

    Full text link
    The computation of the two-point correlation form factor K(t) is performed for a rectangular billiard with a small size impurity inside for both periodic or Dirichlet boundary conditions. It is demonstrated that all terms of perturbation expansion of this form factor in powers of t can be computed directly by semiclassical trace formula. The main part of the calculation is the summation of non-diagonal terms in the cross product of classical orbits. When the diffraction coefficient is a constant our results coincide with expansion of exact expressions ontained by a different method.Comment: 42 pages, 10 figures, Late
    corecore