In a semiconductor-based double quantum well (QW) coupled to a degree of
freedom with an internal dynamics, we demonstrate that the electronic motion is
controllable within femtoseconds by applying appropriately shaped
electromagnetic pulses. In particular, we consider a pulse-driven AlxGa1-xAs
based symmetric double QW coupled to uniformly distributed or localized
vibrational modes and present analytical results for the lowest two levels.
These predictions are assessed and generalized by full-fledged numerical
simulations showing that localization and time-stabilization of the driven
electron dynamics is indeed possible under the conditions identified here, even
with a simultaneous excitations of vibrational modes.Comment: to be published in Appl.Phys.Let