11,467 research outputs found

    Leptonic CP violation: zero, maximal or between the two extremes

    Get PDF
    Discovery of the CP-violation in the lepton sector is one of the challenges of the particle physics. We search for possible principles, symmetries and phenomenological relations that can lead to particular values of the CP-violating Dirac phase, δ\delta. In this connection we discuss two extreme cases: the zero phase, δ=0\delta = 0, and the maximal CP-violation, δ=±π/2\delta = \pm \pi/2, and relate them to the peculiar pattern of the neutrino mixing. The maximal CP-violation can be related to the νμντ\nu_\mu - \nu_\tau reflection symmetry. We study various aspects of this symmetry and introduce a generalized reflection symmetry that can lead to an arbitrary phase that depends on the parameter of the symmetry transformation. The generalized reflection symmetry predicts a simple relation between the Dirac and Majorana phases. We also consider the possibility of certain relations between the CP-violating phases in the quark and lepton sectors.Comment: 34 pages, no figures; v3: version appeared in JHE

    Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in α\alpha'-NaV2_2O5_5 studied by far infrared spectroscopy

    Full text link
    We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3 and 200cm-1 in polarizations of incident light parallel to a, b, and c crystallographic axes in magnetic fields up to 33T. The triplet origin of an excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The magnitude of the spin gap at low temperatures is found to be magnetic field independent at least up to 33T. All other infrared-active transitions appearing below Tc are ascribed to zone-folded phonons. Two different dynamic Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to the oscillator strength of the otherwise forbidden singlet to triplet transition. 1. The strongest singlet to triplet transition is an electric dipole transition where the polarization of the incident light's electric field is parallel to the ladder rungs, and is allowed by the dynamic DM interaction created by a high frequency optical a-axis phonon. 2. In the incident light polarization perpendicular to the ladder planes an enhancement of the singlet to triplet transition is observed when the applied magnetic field shifts the singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon energy. The origin of this mechanism is the dynamic DM interaction created by the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had been los

    NLO QCD bottom corrections to Higgs boson production in the MSSM

    Get PDF
    We present a calculation of the two-loop bottom-sbottom-gluino contributions to Higgs boson production via gluon fusion in the MSSM. The calculation is based on an asymptotic expansion in the masses of the supersymmetric particles, which are assumed to be much heavier than the bottom quark and the Higgs bosons. We obtain explicit analytic results that allow for a straightforward identification of the dominant contributions in the NLO bottom corrections. We emphasize the interplay between the calculations of the masses and the production cross sections of the Higgs bosons, discussing sensible choices of renormalization scheme for the parameters in the bottom/sbottom sector.Comment: 25 pages, 4 figures. v2: references and two figures added, version published in JHE

    Bi-large Neutrino Mixing and Mass of the Lightest Neutrino from Third Generation Dominance in a Democratic Approach

    Full text link
    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bi-large mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin \theta_{13}. If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m_{top}^2/M_{GUT}) sin^2 \theta_{23} sin^2 \theta_{12} in the limit sin \theta_{13} = 0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M_1, M_2 < 10^{-4} M_3, M_3 = M_{GUT}.Comment: typos correcte

    Eigenvectors of the discrete Laplacian on regular graphs - a statistical approach

    Full text link
    In an attempt to characterize the structure of eigenvectors of random regular graphs, we investigate the correlations between the components of the eigenvectors associated to different vertices. In addition, we provide numerical observations, suggesting that the eigenvectors follow a Gaussian distribution. Following this assumption, we reconstruct some properties of the nodal structure which were observed in numerical simulations, but were not explained so far. We also show that some statistical properties of the nodal pattern cannot be described in terms of a percolation model, as opposed to the suggested correspondence for eigenvectors of 2 dimensional manifolds.Comment: 28 pages, 11 figure

    Quantum Magnetization Plateau in Spin-1 Triangular-Lattice Antiferromagnet Ba3_3NiSb2_2O9_9

    Full text link
    We report the results of magnetization and specific heat measurements on Ba3_3NiSb2_2O9_9, which is a quasi-two-dimensional spin-1 triangular-lattice antiferromagnet. We observed a nonclassical magnetization plateau at one-third of the saturation magnetization that is driven by spin frustration and quantum fluctuation. Exact diagonalization for a 21-site rhombic cluster was performed to analyze the magnetization process. Experimental and calculated results agree well.Comment: published in Journal of the Physical Society of Japan 80 (2011) 09370

    Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads

    Full text link
    An interacting one-dimensional electron system, the Luttinger liquid, is distinct from the "conventional" Fermi liquids formed by interacting electrons in two and three dimensions. Some of its most spectacular properties are revealed in the process of electron tunneling: as a function of the applied bias or temperature the tunneling current demonstrates a non-trivial power-law suppression. Here, we create a system which emulates tunneling in a Luttinger liquid, by controlling the interaction of the tunneling electron with its environment. We further replace a single tunneling barrier with a double-barrier resonant level structure and investigate resonant tunneling between Luttinger liquids. For the first time, we observe perfect transparency of the resonant level embedded in the interacting environment, while the width of the resonance tends to zero. We argue that this unique behavior results from many-body physics of interacting electrons and signals the presence of a quantum phase transition (QPT). In our samples many parameters, including the interaction strength, can be precisely controlled; thus, we have created an attractive model system for studying quantum critical phenomena in general. Our work therefore has broadly reaching implications for understanding QPTs in more complex systems, such as cold atoms and strongly correlated bulk materials.Comment: 11 pages total (main text + supplementary

    Optical spectroscopic study of the interplay of spin and charge in NaV2O5

    Get PDF
    We investigate the temperature dependent optical properties of NaV2O5, in the energy range 4meV-4eV. The symmetry of the system is discussed on the basis of infrared phonon spectra. By analyzing the optically allowed phonons at temperatures below and above the phase transition, we conclude that a second-order change to a larger unit cell takes place below 34 K, with a fluctuation regime extending over a broad temperature range. In the high temperature undistorted phase, we find good agreement with the recently proposed centrosymmetric space group Pmmn. On the other hand, the detailed analysis of the electronic excitations detected in the optical conductivity, provides direct evidence for a charge disproportionated electronic ground-state, at least on a locale scale: A consistent interpretation of both structural and optical conductivity data requires an asymmetrical charge distribution on each rung, without any long range order. We show that, because of the locally broken symmetry, spin-flip excitations carry a finite electric dipole moment, which is responsible for the detection of direct two-magnon optical absorption processes for E parallel to the a axis. The charged-magnon model, developed to interpret the optical conductivity of NaV2O5, is described in detail, and its relevance to other strongly correlated electron systems, where the interplay of spin and charge plays a crucial role in determining the low energy electrodynamics, is discussed.Comment: Revtex, 19 pages, 16 postscript pictures embedded in the text, submitted to PRB. Find more stuff at http://www.stanford.edu/~damascel/andreaphd.html or http://www.ub.rug.nl/eldoc/dis/science/a.damascelli

    S_3-flavour symmetry as realized in lepton flavour violating processes

    Full text link
    A variety of lepton flavour violating effects related to the recent discovery of neutrino oscillations and mixings is here systematically discussed in terms of an S_3-flavour permutational symmetry. After a brief review of some relevant results on lepton masses and mixings, that had been derived in the framework of a Minimal S_3-Invariant Extension of the Standard Model, we derive explicit analytical expressions for the matrices of the Yukawa couplings and compute the branching ratios of some selected flavour changing neutral current (FCNC) processes, as well as, the contribution of the exchange of neutral flavour changing scalars to the anomaly of the muon's magnetic moment as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude. The contribution of FCNC to the anomaly of the muon's magnetic moment is small but non-negligible.Comment: 23 pages, one figure. To appear in J. Phys A: Mathematical and Theoretical (SPE QTS5

    Low-energy formulas for neutrino masses with tanβ\tan \beta-dependent hierarchy

    Full text link
    Using radiative correction and seesaw mechanism,we derive analytic formulas for neutrino masses in SUSY unified theories exhibiting, for the first time, a new hierarchial relation among them.The new hierarchy is found to be quite significant especially for smaller values of tanβ\tan\beta.Comment: 10 pages,REVTEX, no figures,typographical errors rectifie
    corecore