12 research outputs found

    Seismic detection of rockslides at regional scale: examples from the Eastern Alps and feasibility of kurtosis-based event location

    Get PDF
    Seismic records can provide detailed insight into the mechanisms of gravitational mass movements. Catastrophic events that generate long-period seismic radiation have been studied in detail, and monitoring systems have been developed for applications on a very local scale. Here we demonstrate that similar techniques can also be applied to regional seismic networks, which show great potential for real-time and large-scale monitoring and analysis of rockslide activity. This paper studies 19 moderate-sized to large rockslides in the Eastern Alps that were recorded by regional seismic networks within distances of a few tens of kilometers to more than 200&thinsp;km. We develop a simple and fully automatic processing chain that detects, locates, and classifies rockslides based on vertical-component seismic records. We show that a kurtosis-based onset picker is suitable to detect the very emergent onsets of rockslide signals and to locate the rockslides within a few kilometers from the true origin using a grid search and a 1-D seismic velocity model. Automatic discrimination between rockslides and local earthquakes is possible by a combination of characteristic parameters extracted from the seismic records, such as kurtosis or maximum-to-mean amplitude ratios. We attempt to relate the amplitude of the seismic records to the documented rockslide volume and reveal a potential power law in agreement with earlier studies. Since our approach is based on simplified methods we suggest and discuss how each step of the automatic processing could be expanded and improved to achieve more detailed results in the future.</p

    Magnus expansion for a chirped quantum two-level system

    Get PDF
    We derive a Magnus expansion for a frequency chirped quantum two-level system. We obtain a time-independent effective Hamiltonian which generates a stroboscopic time evolution. At lowest order the according dynamics is identical to results from using a rotating wave approximation. We determine, furthermore, also the next higher order corrections within our expansion scheme in correspondence to the Bloch-Siegert shifts for harmonically driven systems. Importantly, our scheme can be extended to more complicated systems, i.e. even many-body systems.Comment: 4 pages, 1 figur

    3D crustal structure of the Ligurian Basin revealed by surface wavetomography using ocean bottom seismometer data

    Get PDF
    The Liguro-Provençal basin was formed as a back-arc basin of the retreating Calabrian-Apennines subduction zone during the Oligocene and Miocene. The resulting rotation of the Corsica-Sardinia block is associated with rifting, shaping the Ligurian Sea. It is still debated whether oceanic or atypical oceanic crust was formed or if the crust is continental and experienced extreme thinning during the opening of the basin. We invert velocity models using an amphibious network of seismic stations, including 22 broadband Ocean Bottom Seismometers (OBS) to investigate the lithospheric structure of the Ligurian sea. The instruments were installed in the Ligurian Sea for eight months between June 2017 and February 2018 as part of the AlpArray seismic network. Because of additional noise sources in the ocean, OBS data are rarely used for ambient noise studies. However, we attentively pre-process the data, including corrections for instrument tilt and seafloor compliance. We took extra care to exclude higher modes of the ambient-noise Rayleigh waves. We calculate daily cross-correlation functions for the LOBSTER array and surrounding land stations. Additionally, we correlate short time windows that include teleseismic earthquakes that allow us to derive surface wave group velocities for longer periods than using ambient noise only. Group velocity maps are obtained by inverting Green’s functions derived from the cross-correlation of ambient noise and teleseismic events, respectively. We then used the resulting 3D group velocity information to calculate 1D depth inversions for S-wave velocities. The shear-wave velocity results show a deepening of the Moho from 12 km at the southwestern basin centre to 20–25 km at the Ligurian coast in the northeast and over 30 km at the Provençal coast. We find no hint on mantle serpentinisation and no evidence for an Alpine slab, at least down to depths of 25 km. However, we see a separation of the southwestern and northeastern Ligurian Basin that coincides with the promoted prolongation of the Alpine front

    AlpArray in Austria and Slovakia: technical realization, site description and noise characterization

    No full text
    We report the technical realization and performance of thirty temporary seismic broadband deployments for the AlpArray project in eastern Austria and western Slovakia. Reftek 151 60s sensors and Reftek 130/130S digitizers form the core instrumentation of our seismic stations; these are mostly installed inside abandoned or occasionally used basements or cellars in small buildings or huts. We describe our type of installation and briefly introduce the site conditions for each of the thirty installations. We present a probabilistic power spectral density analysis to assess the noise conditions at all sites and potential relations to the installation design

    Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    No full text
    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network

    3D crustal structure of the Eastern Alpine region from ambient noise tomography

    No full text
    The tectonic evolution of the European Eastern Alps within the Alpine orogeny is still under debate. Open questions include: the link between surface, crustal and mantle structures; the nature of the Moho gap between the two plates; the relationship between the Alps, the adjacent foreland basin and the Bohemian Massif lithospheric blocks. We collected one year of continuous data recorded by ~250 broadband seismic stations –55 of which installed within the EASI AlpArray complementary experiment– in the Eastern Alpine region. Exploiting surface wave group velocity from seismic ambient noise, we obtained an high-resolution 3D S-wave crustal model of the area. The Rayleigh-wave group-velocity from 3 s to 35 s are inverted to obtain 2-D group velocity maps with a resolution of ~15 km. From these maps, we determine a set of 1D velocity models via a Neighborhood Algorithm, resulting in a new 3D model of S-wave velocity with associated uncertainties. The vertical parameterization is a 3-layer crust with the velocity properties in each layer described by a gradient. Our final model finds high correlation with specific geological features in the Eastern Alps up to 20 km depth, the deep structure of the Molasse basin and important variations of crustal thickness and velocities as a result of the Alpine orogeny post-collisional evolution. The strength of our new information relies on the absolute S-wave crustal velocity and the velocity gradient unambiguously sampled along the Moho, only limited by the amount and quality distribution of the data available

    Basin inversion: reactivated rift structures in the central Ligurian Sea revealed using ocean bottom seismometers

    Get PDF
    The northern margin of the Ligurian Basin shows notable seismicity at the Alpine front, including frequent magnitude 4 events. Seismicity decreases offshore towards the Basin centre and Corsica, revealing a diffuse distribution of low magnitude earthquakes. We analyse data of the amphibious AlpArray seismic network with focus on the offshore component, the AlpArray OBS network, consisting of 24 broadband ocean bottom seismometers deployed for eight months, to reveal the seismicity and depth distribution of micro-earthquakes beneath the Ligurian Sea. Two clusters occurred between ~10 km to ~16 km depth below sea surface, within the lower crust and uppermost mantle. Thrust faulting focal mechanisms indicate compression and an inversion of the Ligurian Basin, which is an abandoned Oligocene rift basin. The Basin inversion is suggested to be related to the Africa-Europe plate convergence. The locations and focal mechanisms of seismicity suggest reactivation of pre-existing rift structures. Slightly different striking directions of faults in the basin centre compared to faults further east and hence away from the abandoned rift may mimic the counter-clockwise rotation of the Corsica-Sardinia block during ~20–16 Ma. The observed cluster events support the hypothesis of strengthening of crust and uppermost mantle during rifting related extension and thinning of continental crust

    Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization

    No full text
    AlpArray is a large collaborative seismological project in Europe that includes more than 50 research institutes and seismological observatories. At the heart of the project is the collection of top-quality seismological data from a dense network of broadband temporary seismic stations, in compliment to the existing permanent networks, that ensures a homogeneous station coverage of the greater Alpine region. This Alp Array Seismic Network (AASN) began operation in January 2016 and will have a duration of at least 2 years. In this work we report the Swiss contribution to the AASN, we concentrate on the site selection process, our methods for stations installation, data quality and data management. We deployed 27 temporary broadband stations equipped with STS-2 and Trillium Compact 120s sensors. The deployment and maintenance of the temporary stations across 5 countries is managed by ETH Zurich and it is the result of a fruitful collaboration between five institutes in Europe.ISSN:1680-7340ISSN:1680-735

    Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization

    No full text
    AlpArray is a large collaborative seismological project in Europe that includes more than 50 research institutes and seismological observatories. At the heart of the project is the collection of top-quality seismological data from a dense network of broadband temporary seismic stations, in compliment to the existing permanent networks, that ensures a homogeneous station coverage of the greater Alpine region. This Alp Array Seismic Network (AASN) began operation in January 2016 and will have a duration of at least 2 years. In this work we report the Swiss contribution to the AASN, we concentrate on the site selection process, our methods for stations installation, data quality and data management. We deployed 27 temporary broadband stations equipped with STS-2 and Trillium Compact 120 s sensors. The deployment and maintenance of the temporary stations across 5 countries is managed by ETH Zurich and it is the result of a fruitful collaboration between five institutes in Europe
    corecore