439 research outputs found

    Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements

    Get PDF
    International audienceTo understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 ÎĽm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface

    Interface tailoring for charge injection mitigation in insulators: Different principles and achievements

    Get PDF
    International audienc

    Handling Geometric Features in Nanoscale Characterization of Charge Injection and Transport in thin Dielectric Films

    Get PDF
    International audienceDue to miniaturization and attractiveness of nanosized and/or nanostructured dielectric layers, characterization at the local scale of charge injection and transport phenomena comes to the fore. To that end the electric modes derived from Atomic Force Microscopy (AFM) are more and more frequently used. In this study, the influence of AFM tip-plane system configuration on the electric field distribution is investigated for homogeneous and heterogeneous (nanostructured) thin dielectric layers. The experimental and computing results reveal that the radial component of the electric field conveys the charge lateral spreading whereas the axial component of the electric field governs the amount of injected charges. The electric field distribution is slightly influenced by the heterogeneity of the material. Moreover, the interpretation of the current measurements requires consideration of the entire electric field distribution and not only the computed field at the contact point
    • …
    corecore