59 research outputs found

    Concurrent validity and discriminative ability of Dutch performance-based motor tests in 5 to 6 years old children

    Get PDF
    AIM: To assess the concurrent validity and discriminative ability of total, gross and fine motor (TM, GM and FM) scores of Dutch performance-based motor tests, the Baecke-Fassaert Motor Test (BFMT) and the 8- and 4-Skills Scan (SkSc) with the Movement Assessment Battery (MABC) for children at age 5. METHOD: 116 Dutch children (40.3% boys) were included. Spearman's rho correlations and area under the curves (AUC) were assessed. RESULTS: Correlations between the TM scores of the tests were strong (absolute values from 0.58 to .65); the correlations between the GM scores and the FM scores between and within tests were weaker (absolute values from 0.30 to 0.45). Related to the cut-off (15th percentile) of the MABC, the AUC of the BFMT, 8- and 4-SkSc, the AUC was 0.853 (95% CI: 0.757-0.949), 0.905 (95% CI: 0.837-0.972) and 0.844 (95% CI: 0.730-0.957), respectively. At optimal cut-offs, the sensitivity and specificity of the BFMT, the 8- and 4-SkSc were 78.6 and 78.4%, 92.2 and 73.2%, 78.6 and 76.3%, respectively. CONCLUSION: All tests had a reasonably high discriminative ability, but validation with the MABC-2 and adaptations are needed to meet the requirements for screening (i.e. sensitivity ≥80% and specificity ≥90%). The relatively weak correlation between GM and FM scores implies that tests should be normalized and validated for GM and FM ability, separately

    Between‐hospital variation in rates of complications and decline of patient performance after glioblastoma surgery in the dutch Quality Registry Neuro Surgery

    Get PDF
    Introduction: For decisions on glioblastoma surgery, the risk of complications and decline in performance is decisive. In this study, we determine the rate of complications and performance decline after resections and biopsies in a national quality registry, their risk factors and the risk-standardized variation between institutions. Methods: Data from all 3288 adults with first-time glioblastoma surgery at 13 hospitals were obtained from a prospective population-based Quality Registry Neuro Surgery in the Netherlands between 2013 and 2017. Patients were stratified by biopsies and resections. Complications were categorized as Clavien-Dindo grades II and higher. Performance decline was considered a deterioration of more than 10 Karnofsky points at 6 weeks. Risk factors were evaluated in multivariable logistic regression analysis. Patient-specific expected and observed complications and performance declines were summarized for institutions and analyzed in funnel plots. Results: For 2271 resections, the overall complication rate was 20 % and 16 % declined in performance. For 1017 biopsies, the overall complication rate was 11 % and 30 % declined in performance. Patient-related characteristics were significant risk factors for complications and performance decline, i.e. higher age, lower baseline Karnofsky, higher ASA classification, and the surgical procedure. Hospital characteristics, i.e. case volume, university affiliation and biopsy percentage, were not. In three institutes the observed complication rate was significantly less than expected. In one institute significantly more performance declines were observed than expected, and in one institute significantly less. Conclusions: Patient characteristics, but not case volume, were risk factors for complications and performance decline after glioblastoma surgery. After risk-standardization, hospitals varied in complications and performance declines

    Between-hospital variation in mortality and survival after glioblastoma surgery in the Dutch Quality Registry for Neuro Surgery

    Get PDF
    Purpose: Standards for surgical decisions are unavailable, hence treatment decisions can be personalized, but also introduce variation in treatment and outcome. National registrations seek to monitor healthcare quality. The goal of the study is to measure between-hospital variation in risk-standardized survival outcome after glioblastoma surgery and to explore the association between survival and hospital characteristics in conjunction with patient-related risk factors. Methods: Data of 2,409 adults with first-time glioblastoma surgery at 14 hospitals were obtained from a comprehensive, prospective population-based Quality Registry Neuro Surgery in The Netherlands between 2011 and 2014. We compared the observed survival with patient-specific risk-standardized expected early (30-day) mortality and late (2-year) survival, based on age, performance, and treatment year. We analyzed funnel plots, logistic regression and proportional hazards models. Results: Overall 30-day mortality was 5.2% and overall 2-year survival was 13.5%. Median survival varied between 4.8 and 14.9 months among hospitals, and biopsy percentages ranged between 16

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF
    Background and purpose: Prospectively collected data comparing the safety and effectiveness of individual non-vitamin K antagonists (NOACs) are lacking. Our objective was to directly compare the effectiveness and safety of NOACs in patients with newly diagnosed atrial fibrillation (AF). Methods: In GLORIA-AF, a large, prospective, global registry program, consecutive patients with newly diagnosed AF were followed for 3 years. The comparative analyses for (1) dabigatran vs rivaroxaban or apixaban and (2) rivaroxaban vs apixaban were performed on propensity score (PS)-matched patient sets. Proportional hazards regression was used to estimate hazard ratios (HRs) for outcomes of interest. Results: The GLORIA-AF Phase III registry enrolled 21,300 patients between January 2014 and December 2016. Of these, 3839 were prescribed dabigatran, 4015 rivaroxaban and 4505 apixaban, with median ages of 71.0, 71.0, and 73.0 years, respectively. In the PS-matched set, the adjusted HRs and 95% confidence intervals (CIs) for dabigatran vs rivaroxaban were, for stroke: 1.27 (0.79–2.03), major bleeding 0.59 (0.40–0.88), myocardial infarction 0.68 (0.40–1.16), and all-cause death 0.86 (0.67–1.10). For the comparison of dabigatran vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 1.16 (0.76–1.78), myocardial infarction 0.84 (0.48–1.46), major bleeding 0.98 (0.63–1.52) and all-cause death 1.01 (0.79–1.29). For the comparison of rivaroxaban vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 0.78 (0.52–1.19), myocardial infarction 0.96 (0.63–1.45), major bleeding 1.54 (1.14–2.08), and all-cause death 0.97 (0.80–1.19). Conclusions: Patients treated with dabigatran had a 41% lower risk of major bleeding compared with rivaroxaban, but similar risks of stroke, MI, and death. Relative to apixaban, patients treated with dabigatran had similar risks of stroke, major bleeding, MI, and death. Rivaroxaban relative to apixaban had increased risk for major bleeding, but similar risks for stroke, MI, and death. Registration: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01468701, NCT01671007. Date of registration: September 2013

    The use of (Network) meta-analysis in clinical oncology

    No full text
    Meta-analysis is important in oncological research to provide a more reliable answer to a clinical research question that was assessed in multiple studies but with inconsistent results. Pair-wise meta-analysis can be applied when comparing two treatments at once, whereas it is possible to compare multiple treatments at once with network meta-analysis (NMA). After careful systematic review of the literature and quality assessment of the identified studies, there are several assumptions in the use of meta-analysis. First, the added value of meta-analysis should be evaluated by examining the comparability of study populations. Second, the appropriate comparator in meta-analysis should be chosen according to the types of comparisons made in individual studies: (1) Experimental and comparator arms are different treatments (A vs. B); (2) Substitution of a conventional treatment by an experimental treatment (A+B vs. A+C); or (3) Addition of an experimental treatment (A+B vs. B). Ideally there is one common comparator treatment, but when there are multiple common comparators, the most efficacious comparator is preferable. Third, treatments can only be adequately pooled in meta-analysis or merged into one treatment node in NMA when considering likewise mechanism of action and similar setting in which treatment is indicated. Fourth, for both pair-wise meta-analysis and NMA, adequate assessment of heterogeneity should be performed and sub-analysis and sensitivity analysis can be applied to objectify a possible confounding factor. Network inconsistency, as statistical manifestation of violating the transitivity assumption, can best be evaluated by node-split modeling. NMA has advantages over pair-wise meta-analysis, such as clarification of inconsistent outcomes from multiple studies including multiple common comparators and indirect effect calculation of missing direct comparisons between important treatments. Also, NMA can provide increased statistical power and cross-validation of the observed treatment effect of weak connections with reasonable network connectivity and sufficient sample-sizes. However, inappropriate use of NMA can cause misleading results, and may emerge when there is low network connectivity, and therefore low statistical power. Furthermore, indirect evidence is still observational and should be interpreted with caution. NMA should therefore preferably be conducted and interpreted by both expert clinicians in the field and an experienced statistician. Finally, the use of meta-analysis can be extended to other areas, for example the identification of prognostic and predictive factors. Also, the integration of evidence from both meta-analysis and expert opinion can improve the construction of prognostic models in real-world databases

    Virosomes in vaccine development:Induction of cytotoxic T lymphocyte activity with virosome-encapsulated protein antigens

    No full text
    Virosomes are reconstituted viral envelopes which lack the genetic material but retain the cell entry and membrane fusion characteristics of the virus they are derived from. Thus, influenza virosomes are taken up by cells via receptor-mediated endocytosis, which directs the particles to the endosomal cell compartment. Subsequently, the virosomal membrane fuses with the endosomal membrane induced by the mildly acidic pH within the endosomes. This fusion process establishes continuity between the lumen of the virosome and the cell cytosol. Upon interaction of virosomes with antigen-presenting cells (APCs), protein antigens encapsulated within virosomes will be delivered to the cell cytosol, and thus, into the MHC class I presentation pathway. Indeed, virosome-mediated delivery of antigens in vivo results in efficient priming of a class I MHC-restricted cytotoxic T lymphocyte (CTL) response
    corecore