298 research outputs found

    Validation and verification of the GeneFinder (TM) COVID-19 Plus RealAmp kit on the ELITe InGenius (R) instrument

    Get PDF
    Background: Throughout the SARS-CoV-2 pandemic, a rapid identification of the virus was essential to quickly recognize positive cases and limit further spread by applying appropriate infection prevention. Many diagnostic laboratories use a multiplex Real-Time PCR assay, as they are not only highly sensitive but also specific. Currently, there are several assays and platforms in the market available which target different SARS-CoV-2 genes. The aim of this study was to validate and verify the GeneFinder (TM) COVID-19 PLUS RealAmp kit on the ELITe InGenius (R) instrument and compare to the national reference method. Methods: GeneFinder (TM) COVID-19 PLUS RealAmp kit was evaluated against the routine WHO in- house RealTime PCR assay, which is also the national reference method in the Netherlands and used in our laboratory. The sensitivity was tested using the analytical panel from Qnostics (Glasgow, United Kingdom) and the specificity was tested with patient material comprising of other seasonal respiratory viruses. In addition, 96 clinical samples initially analyzed by routine Real-Time PCR were tested using the GeneFinder (TM) COVID-19 PLUS RealAmp kit on the ELITe InGenius (R) instrument. Results: The GeneFinder (TM) COVID-19 PLUS RealAmp kit had a similar performance compared to routine in-house testing, with a limit of detection of 500 dC/mL for the RdRp-gene and E gene. Meanwhile, the N gene showed a limit of detection of 50 dC/mL. The SARS-CoV-2 test was highly specific and detected no other respiratory viruses. The results of the clinical samples were comparable between both assays with similar Ct values observed for the in-house Real-Time-PCR and the GeneFinder (TM) COVID-19 PLUS RealAmp kit for the N gene. Conclusion: The GeneFinder (TM) COVID-19 PLUS RealAmp kit on the ELITe InGenius (R) instrument had an appropriate sensitivity and specificity that could be used in small scale laboratories or during night shifts where accurate diagnostics are crucial

    The Impact of Management Control on Employee Motivation and Performance in the Public Sector

    Get PDF
    This study examines the relations among various types of management control, intrinsic and extrinsic motivation, and performance in the public sector. We draw on motivation crowding theory and self-determination theory to argue that four different types of management control (i.e. personnel, cultural, action, and results control) are likely to have an influence on intrinsic motivation and/or extrinsic motivation. We test a structural equation model using survey data from 105 similar departments in the public sector. Our findings indicate that the use of personnel and cultural controls is positively associated with employees’ intrinsic motivation, and that the use of results controls is positively associated with employees’ extrinsic motivation. Moreover, both intrinsic motivation and extrinsic motivation are positively associated with performance. Taken together, these findings support the idea advocated by New Public Management proponents that results control can enhance employee motivation and performance in the public sector. However, the findings also highlight an essential nuance; in addition to results control, personnel and cultural controls are also important, as they enhance intrinsic motivation and performance. This implies that a sole focus on results control is too narrow and can lead to suboptimal levels of employee motivation and performance in the public sector

    An air shower array for LOFAR: LORA

    Get PDF
    LOFAR is a new form of radio telescope which can detect radio emission from air showers induced by very high-energy cosmic rays. It can also look for radio emission from particle cascades on the Moon induced by ultra high-energy cosmic rays or neutrinos. To complement the radio detection, we are setting up a small particle detector array LORA (LOfar Radboud Air shower array) within an area of 300\sim 300 m diameter in the LOFAR core. It will help in triggering and confirming the radio detection of air showers with the LOFAR antennas. In this paper, we present a short overview about LORA and discuss its current status.Comment: 10 pages (using article.cls), 6 figures, accepted for the proceedings of 22nd European Cosmic Ray Symposium, 3-6 August 2010, Finlan

    Polarized radio emission from extensive air showers measured with LOFAR

    Get PDF
    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%99\%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3±1.0)%(3.3\pm 1.0)\% for very inclined air showers at 25m25\, \mathrm{m} to (20.3±1.3)%(20.3\pm 1.3)\% for almost vertical showers at 225m225\, \mathrm{m}. Both dependencies are in qualitative agreement with theoretical predictions.Comment: 22 pages, 14 figures, accepted for publication in JCA

    A method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles

    Get PDF
    The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve long-standing issues such as the transition from Galactic to extragalactic origin, and the nature of the cutoff observed at the highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earth's atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the LOFAR radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation mechanism is now well-understood. The typical uncertainty on the reconstruction of Xmax for LOFAR showers is 17 g/cm^2.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    The radio emission pattern of air showers as measured with LOFAR - a tool for the reconstruction of the energy and the shower maximum

    Get PDF
    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and give estimators for the energy of the air shower as well as the distance to the shower maximum.Comment: 15 pages, 10 figures, accepted for publication in JCA

    Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon

    Get PDF
    The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above 102210^{22} eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earth's moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), US

    Cosmic Ray Physics with the LOFAR Radio Telescope

    Full text link
    The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of the depth of shower maximum XmaxX_{\max}, the shower observable most sensitive to the mass of the primary cosmic ray, to better than 20 g/cm2^2. With a densely instrumented circular area of roughly 320 m2^2, LOFAR is targeting for cosmic ray astrophysics in the energy range 101610^{16} - 101810^{18} eV. In this contribution we give an overview of the status, recent results, and future plans of cosmic ray detection with the LOFAR radio telescope.Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium (ECRS), Barnaul/Belokurikha, 201
    corecore