156 research outputs found
A Boxology of Design Patterns for Hybrid Learning and Reasoning Systems
We propose a set of compositional design patterns to describe a large variety
of systems that combine statistical techniques from machine learning with
symbolic techniques from knowledge representation. As in other areas of
computer science (knowledge engineering, software engineering, ontology
engineering, process mining and others), such design patterns help to
systematize the literature, clarify which combinations of techniques serve
which purposes, and encourage re-use of software components. We have validated
our set of compositional design patterns against a large body of recent
literature.Comment: 12 pages,55 reference
Modelling Web Service Composition for Deductive Web Mining
Composition of simpler web services into custom applications is understood as promising technique for information requests in a heterogeneous and changing environment. This is also relevant for applications characterised as deductive web mining (DWM). We suggest to use problem-solving methods (PSMs) as templates for composed services. We developed a multi-dimensional, ontology-based framework, and a collection of PSMs, which enable to characterise DWM applications at an abstract level; we describe several existing applications in this framework. We show that the heterogeneity and unboundedness of the web demands for some modifications of the PSM paradigm used in the context of traditional artificial intelligence. Finally, as simple proof of concept, we simulate automated DWM service composition on a small collection of services, PSM-based templates, data objects and ontological knowledge, all implemented in Prolog
Storchastic: A Framework for General Stochastic Automatic Differentiation
Modelers use automatic differentiation (AD) of computation graphs to
implement complex Deep Learning models without defining gradient computations.
Stochastic AD extends AD to stochastic computation graphs with sampling steps,
which arise when modelers handle the intractable expectations common in
Reinforcement Learning and Variational Inference. However, current methods for
stochastic AD are limited: They are either only applicable to continuous random
variables and differentiable functions, or can only use simple but high
variance score-function estimators. To overcome these limitations, we introduce
Storchastic, a new framework for AD of stochastic computation graphs.
Storchastic allows the modeler to choose from a wide variety of gradient
estimation methods at each sampling step, to optimally reduce the variance of
the gradient estimates. Furthermore, Storchastic is provably unbiased for
estimation of any-order gradients, and generalizes variance reduction
techniques to higher-order gradient estimates. Finally, we implement
Storchastic as a PyTorch library at https://github.com/HEmile/storchastic.Comment: 30 pages, 2 figures, 1 table, accepted in NeurIPS 202
Modular Design Patterns for Hybrid Learning and Reasoning Systems: a taxonomy, patterns and use cases
The unification of statistical (data-driven) and symbolic (knowledge-driven)
methods is widely recognised as one of the key challenges of modern AI. Recent
years have seen large number of publications on such hybrid neuro-symbolic AI
systems. That rapidly growing literature is highly diverse and mostly
empirical, and is lacking a unifying view of the large variety of these hybrid
systems. In this paper we analyse a large body of recent literature and we
propose a set of modular design patterns for such hybrid, neuro-symbolic
systems. We are able to describe the architecture of a very large number of
hybrid systems by composing only a small set of elementary patterns as building
blocks.
The main contributions of this paper are: 1) a taxonomically organised
vocabulary to describe both processes and data structures used in hybrid
systems; 2) a set of 15+ design patterns for hybrid AI systems, organised in a
set of elementary patterns and a set of compositional patterns; 3) an
application of these design patterns in two realistic use-cases for hybrid AI
systems. Our patterns reveal similarities between systems that were not
recognised until now. Finally, our design patterns extend and refine Kautz'
earlier attempt at categorising neuro-symbolic architectures.Comment: 20 pages, 22 figures, accepted for publication in the International
Journal of Applied Intelligenc
Combining machine learning and semantic web: A systematic mapping study
In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic components, a new sub-area has emerged that focuses on combining Machine Learning components with techniques developed by the Semantic Web community - Semantic Web Machine Learning (SWeML). Due to its rapid growth and impact on several communities in thepast two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Yet, surveys that adopt principled and unbiased approaches are missing. To fill this gap, we performed a systematic study and analyzed nearly 500 papers published in the past decade in this area, where we focused on evaluating architectural and application-specific features. Our analysis identified a rapidly growing interest in SWeML Systems, with a high impact on several application domains and tasks. Catalysts for this rapid growth are the increased application of deep learning and knowledge graph technologies. By leveraging the in-depth understanding of this area acquired through this study, a further key contribution of this article is a classification system for SWeML Systems that we publish as ontology.</p
- …