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Abstract 
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diagnosis. The core of the work presented here consists of a knowledge base (containing 
anaesthesiological knowledge) and a diagnosis system. The knowledge base is specified in the 
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1. Introduction 

We report in this paper on the research project FAN (formalisation of anaes- 
thesiology). FAN aims to contribute to decision support for anaesthesiologists by 
formalisation of the knowledge required for this purpose. In order to realise this, 
FAN combines methods and techniques from Artificial Intelligence (e.g. diagnos- 
tic reasoning and knowledge elicitation) and Software Engineering (e.g. formal 
specification and prototyping). 

1.1. Medical care and information technology 

The idea of applying computers in medical care is quite obvious as it stands, 
but by no means an easy job. One general reason for this, is the inherent 
complexity of the design of information systems. A more specific reason lies in the 
human-centred character of medical care, where many processes, e.g. those involv- 
ing personal contact and care, are not amenable to automatisation. 

There are, however, abilities in which humans are outperformed by computers: 
real-time processing of huge amounts of data, vigilance and alertness during long 
periods of time. Such abilities are required in the operation room and intensive 
care, and it is not surprising that information technology is frequently applied 
here. The processing involved encompasses not only data collection and documen- 
tation, but also the more challenging task of diagnosis, therapy advice and 
prediction. 

This paper reports on the FAN project, which is involved in this transition 
from more traditional activities of medical data collection and documentation to 
the more advanced tasks of diagnostic reasoning and therapy advice. As such, 
FAN is part of the long-term activities of the Department of Anaesthesiology of 
the University Hospital Groningen, which started in the beginning of the 1980s 
with the design and implementation of the documentation and data management 
system CAROLA (see Section 2). 

1.2. The role of formal spec$cation 

The transition from a relatively traditional data management system like CAR- 
OLA to an extension with knowledge-intensive functionalities like diagnostic rea- 
soning and therapy advice is in fact a transition from data processing to 
knowledge processing, from the structured and rather well-understood domain of 
physiological measurements to the less structured, open and sometimes ill-defined 
domain of physiological and medical knowledge. 

To deal with this new situation, one has to handle these adverse properties. For 
this purpose, we chose to apply formal specl@cation, a modern approach in 
Software Engineering especially geared towards disambiguation and structuring. 
Now the question is: how to formalise a weakly structured and open domain (in 
this case: the relevant medical knowledge)? Here we used the method developed in 
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the FSA project (which is related to FAN), consisting of guidelines, a formal 
language and tools. The guidelines divide the formalisation task in three subtasks: 
development of a dictionary, a signature, and an axiomatisation; see Section 5 for 
more information. 

It is our experience that the use of a method is indispensible when creating a 
formal specification of a knowledge domain, especially when domain specialists 
withottt a formal/mathematical background are involved. The FSA method turned 
out to be effective in this respect: it divides the formalisation task in three subtasks 
and it supports the communication with domain specialists via the dictionary and 
a tool for creating signature diagrams. The hard part of the formalisation work lies 
in choosing adequate conceptualisations and abstractions. An example of a useful 
conceptualisation is the distinction of several modalities of courses-of-values (e.g. 
heart :rate or body temperature during operation): actual, desired, and default 
(when no data are available); an example of useful abstraction is the notion 
phenomenon, encompassing illness, symptom, sign, syndrome, etc. 

1.3. FAN: project description 

FAN is an interdisciplinary project at the University Hospital Groningen and the 
Computing Science Department of the University of Groningen, with active 
participants from the Amsterdam Universities. It started in 1993, partly as the 
continuation of the CAROLA project at the University Hospital Groningen which 
resulted in the automated operation documentation system CAROLA. When CAR- 
OLA was realised, it was natural to think about extending its functionality: assist the 
medical staff during thorax operations in the evaluation of the state of the patient 
by not only providing the relevant data, but also suggesting possible conclusions, 
viz. diagnoses and therapy selection. These extended functionalities of CAROLA 
require the availability of medical knowledge in a form amenable to computer use. 
However, such medical knowledge is normally only available in written form (e.g. 
in textbooks) or not even directly accessible (e.g. knowledge and experience stored 
in the heads of medical specialists). As a consequence, it has to be made explicit (in 
the latter case) and to be formalised (i.e. written in a formal language, see Section 

5). 
Another starting point for FAN was the Formal System Analysis (FSA) project 

at the Computing Science Department of the University of Groningen, which aims 
at the development of a method and tools for developing formal specifications. For 
FSA, FAN is one of two major case studies, the other being the formalisation of 
Chomsky’s Minimalist Program [2], a linguistic theory. 

FAN serves the following goals: 
providing descriptions of anaesthesiological knowledge required for the design 
and development of decision support systems; 
testing a general method for creating such descriptions; 
in the long run: contributing to the improvement of medical care by making 
medical knowledge accessible for automated processing. 
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1.4. The rest of this paper 

We start in Section 2 with a short overview of the operation documentation 
system CAROLA, which forms the starting point of the FAN project reported here. 
Section 3 contains a description of the tasks we aim to provide decision support for, 
and some remarks about the knowledge required for these tasks. In Section 4, we 
give a rather detailed treatment of one of these tasks, viz. value processing and 
abstraction. The formalisation method used for obtaining the formal specification 
of the knowledge base is presented in Section 5, together with a survey of the 
structure and the contents of the knowledge base, and with some remarks on the 
formalisation process. In Section 6, we present the diagnostic reasoning method 
used in FAN and compare it with a general framework for diagnostic reasoning. 
Section 7 is about a prototype that is being developed for diagnosis during 
perfusion. We end with a comparison with other work (Section 8) and some 
concluding remarks (Section 9). 

2. The system CAROLA 

CAROLA ([8,15]) is a documentation and data management system for anaesthe- 
sia during cardiovascular and other thorax surgery. (It is named after one of the 
students who assisted in the documentation tasks that are now performed by the 
system.) It has been operational at the University Hospital in Groningen (Nether- 
lands) since 1983, and also at the Kerckhoff-Klinik in Bad Nauheim (Germany). 
Over 35 000 operations have been documented with CAROLA. 

The first version of CAROLA was a stand-alone system based on non-standard 
hardware, a proprietary operating system and software, communication over serial 
lines, displaying its data during the operation on a plotter. In 1985 a database was 
added, used for archiving, administration and research. For the latter purpose, an 
easy-to-use query language was developed. In 1994, a second version of CAROLA 
was taken into deployment, based on a graphical workstation and with software 
running on top of HP-UX and X-Windows. 

CAROLA automatically documents physiological variables measured by monitor- 
ing equipment (e.g. blood pressures, heart rate, temperatures) and by peripheral 
equipment (ventilator, heart lung machine); this yields 32 parameters, most of them 
measured once a minute. Information on the phase of the operation, drugs and 
fluids, and over 20 physiological variables that cannot be measured automatically, 
are documented manually by the anaesthesiologist. Identification data and other 
preoperative information are obtained from the Hospital Information System, 
which also communicates to CAROLA the results of laboratory tests performed 
during the operation (e.g. analysis of blood samples) and the data from shared 
equipment. 

At the end of each operation, a paper document for the status and a copy for the 
paper archive are produced, and the record (with an average size of 80 Kb per 
operation, after conversion to the database format ca. 50 Kb) is added to the 
CAROLA database. 
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3. Desired functionality 

The system to be developed on top of CAROLA should support the following 
functional tasks. 

V&e processing and abstraction: This is the transformation of quantitative 
measurements (the raw data from the CAROLA system) to qualitative phenomena 
(information that can be used for diagnosis). This task is elaborated in Section 4. 

Diagnosis: This task is described in more detail in Section 6. 
Therapy advice: This is the task that selects therapies that may cure the disease(s) 

of the (differential) diagnosis. To accurately assess and quantify the side effects of 
a particular therapy, simulation may be required (see below). Another aspect is 
therapy quantification, i.e. computation of the dose (to be used in a medicament 
administration), the infusion rate (for a particular infusion) and the concentration 
of medicaments in an infusion mixture. These quantitative aspects of therapy 
depend on parameters of the patient like sex, age, heart function, liver function, and 
lung function. 

In this paper, we do not go deeply into the decision support for this task, but we 
include the specification of some relevant data types (such as medicaments, infu- 
sions and ways to administer these) in the knowledge base. 

Simulation: This involves forecasting the further development of the condition of 
the paGent, possibly assuming the application of a particular therapy. This is a 
subject for future research in FAN. 

3.1. Knowledge involved in the functional tasks 

It is relevant to distinguish qualitative and quantitative knowledge here. From 
this perspective, the knowledge flow is roughly as follows. Firstly, the support 
process starts quantitatively with value propagation. Then value abstraction trans- 
lates this to the qualitative level, after which diagnosis, therapy selection and 
therapy advice take place. Subsequently, therapy quantification, prediction and 
simulation reconcretise to the quantitative level. 

Quantitative relations include equations and, for continuous simulation, differen- 
tial equations. The translation between quantitative and qualitative levels is done 
by means of inequality operators like > , -c, 2, < . 

Qualitative relations used in FAN include nosological and causal relations. 
Nosological relations link physiological phenomena to less comprehensive phenom- 
ena that they consist of. For example a disease can be described in terms of the 
signs and symptom complexes by which it is characterised. Causal relations express 
cause-effect-relationships between phenomena. Causal relations can be character- 
ised by the time-lapse between cause and associated effect. 

Both nosological and causal relations can be characterised by a strength, which 
can have three values: facultative, obligatory and pathognomonic. The semantics of 
these strengths is discussed in Section 6. 
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4. Value processing and abstraction 

The goal of the value abstraction task is to make the data more amenable for 
both the anaesthesiologist and the diagnostic component of our system. It achieves 
this goal by reducing the amount of detail per parameter by assigning qualitative 
judgements (e.g. too high, too low) to the values of these parameters. The value 
abstraction task does not reduce the number of parameters reported to the 
anaesthesiologist. We decompose the value abstraction task into the following 
subtasks: context acquisition, data filtering, time normalisation, SI-unit normalisa- 
tion, value derivation and discretisation. We will discuss each of these subtasks in 
turn. 

4. I. Context acquisition 

This subtask comprises the acquisition and identification of possibly relevant 
context data concerning the patient (gender, weight, age, physical condition, 
possible allergies) and the operation (phases, periods and events). Typical examples 
for e.g. a bypass operation are the period of anaesthesia, begin and end of the 
operation itself, the perfusion period (when the blood circulation of the patient is 
taken over by the heart-lung machine), etc. 

4.2. Data validation 

This task consists of detecting and (whenever possible) correcting errors in the 
data. There are many possible causes of errors (often called artifacts) occurring in 
the data: typing errors and inaccuracies during manual input, artifacts appearing 
during initialisation and switch-off of equipment, etc. The CAROLA system per- 
forms several kinds of data validation when collecting the data (see [8]). For the 
purpose of the decision support functions described here, additional data validation 
is restricted to checking that specific data items lie within an appropriately chosen 
interval: if not, the data item is discarded. 

4.3. Time normalisation 

The data during an operation are measured at specific time points, and with a 
particular measuring frequency (see Section 2). These time points and frequencies 
vary between different parameters: e.g. for blood pressure, the frequency is once a 
minute, for data from laboratory tests the frequency is much lower (and not 
constant). However, various subtasks (e.g. value derivation and diagnosis) require 
the values of several parameters at a particular time point. 

In order to cope with this problem, the time-normalisation subtask renormalises 
all time-dependent measurements by conversion to normalised time-points (e.g. 
every 10 s). This procedure has two potential disadvantages: firstly, two or more 
measurements for a particular variable may obtain the same time point; secondly, 
it may lead to significant changes in the derivative of a parameter (indicating the 
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degree of change, which is often a relevant notion), caused by resealing. Both 
effects can be diminished effectively by increasing the normalisation frequency, but 
that also increases the amount of data. 

There are other approaches to time normalisation: take the most recently 
availalble measurement at any point, or compute averages over intervals, etc. 
Experrmentation with a prototype (see Section 7) is needed to assess the different 
options. 

4.4. XT-unit normalisation 

Again, to facilitate computation in subsequent tasks, this subtask normahses all 
quantities involved in the measurements to SI units. This involves mostly straight- 
forward computations for conversion of units and normalisation of dimensions, e.g. 
in the following expressions: 

Haematocrite = 28% - (37°C - T,,,,) x O.S%“C 

213 cm = 330 mm 

4.5. Kzzlue computation 

For many relevant variables, the values can be derived from others. To this end, 
the knowledge base of the system contains formulae describing relations between 
magnitudes. Some formulae are based on physical laws such as 

cardiac output = heart rate x stroke volume, 

others on medical experience, for example 

required blood flow = 
body surface area x rectal temperature 

30 

Observe that these formulae are not yet SI-normalised. 

4.4. Discretisation 

After the execution of the subtasks described above, the parameter data are in a 
consistent and reliable numerical format. However, two problems prevent these 
data from being directly useful to either the anaesthesiologist or the diagnostic 
component of a decision support system: (1) the volume of the data is far too large 
(volumes of up to 90 Kb in a period of a few hours, containing many thousands of 
measurements) and (2) the data are in a quantitative format, while the medical 
knowledge and experience of the anaesthesiologist is formulated mainly in qualita- 
tive terms. 

Discretisation is needed to bridge this gap between quantitative measurements 
and qualitative knowledge. In this final subtask of the value abstraction system, 
measurement data are translated into qualitative judgements. An example of such 
a translation: 
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PartM= 83 translates to: ‘mean arterial blood pressure is increased’. 

For discretisation, five qualitative categories are being used: too low, decreased, 
normal, increased, and too high. The correspondence between qualitative and 
quantitative values of a particular variable is given by a discretiser. Such discretisers 
are obtained via knowledge acquisition from expert anaesthesiologists or from 
textbook-values. Two types of discretisers are distinguished: absolute and relative. 
An absolute discretiser uses absolute values to delimit the five qualitative categories: 
for arterial blood pressure, these might be 45, 60, 80, and 100 mmHg. A relative 
discretiser uses percentages of the target value as delimiters, instead of absolute 
values. For example, relative cut-off points 85, 95, 105, and 115% imply e.g. that 
any value between 85 and 95% of the target value is considered decreased, and any 
value above 115% is too high. 

The discretiser to be used for a particular variable may depend on other data. 
Two examples: a systolic blood pressure of 90 mmHg may be high for a lZyear-old 
while it is low for an adult; a body temperature of 34°C is too low at the beginning 
of an operation, but too high when the patient is supposed to be cooled down for 
cardiac surgery. 

5. Formalisation 

In this section, we present the application of a formalisation method from 
software engineering to the creation of a anaesthesiological knowledge base. 

5.1. Formal descriptions 

A formal description is a document written in an artificial language, called a 
formal language. A language is called formal if it is defined with mathematical 
precision. Usually this is done with help of a formal grammar, which indicates what 
symbols (letters, numbers, punctuation marks, names, keywords, mathematical 
symbols, etc.) are in the language and how these symbols can be combined to form 
larger expressions. The formal language then consists of all expressions generated 
by that grammar. 

In order to be useful, a formal language should have meaning. Technically, this 
is provided by the semantics of the language, a systematical, precise and unambigu- 
ous definition of the meaning of all its possible expressions in mathematical terms. 
This is work for logicians and theoretical computer scientists; we do not go further 
into this here. 

Just like natural languages (English, Dutch, etc.), formal languages can be used 
to make descriptions. One may rightfully ask: what is the advantage of a formal 
description when compared with an informal description in plain English? It is a lot 
of work to make it, and reading it is not all that easy. The answer is manifold: 
l formal descriptions yield precision and unambiguity to a degree which is not 

attainable with natural languages; 
l when properly used, they also yield clarity and systematisation; 
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l by their very nature, they are closer to computer programs (for programming 
languages are also formal) so they can be processed with help of software tools 
for consistency checks, prototyping and implementation. 
Well-known examples of formal languages are programming languages. They are 

designed to write programs, i.e. descriptions of actions that can be performed by a 
computer. In software engineering, formal specification languages have been devel- 
oped, with a firm base in logic and discrete mathematics. These languages are 
intended for the formal specification of a system to be constructed, describing what 
the system should do, not how it should be done (for that is what a program does). 
This complies with the sound engineering principle that a specification is indispens- 
able for the successful design of any system of some complexity. 

In the specification of a software system, one can distinguish two parts: the static 
part (specifying the data structures involved) and the dynamic part (specifying the 
processes that will perform the actions of the system, working on data from the 
data structures). Up to now, the formalisation effort in FAN has been put mainly 
in the static aspects of the system to be developed (i.e. the knowledge structure and 
the knowledge base). We intend to supplement this with a formal specification of 
the control structures involved in the system. 

5.2. Thlf formalisation method 

Here we present the method of formalisation, developed by Erik Saaman 
(University of Groningen, Department of Computing Science). Besides on direct 
experience in FAN and other projects, the method is based on object-oriented 
analysir; and design principles (e.g. [21]) such as sub-typing and inheritance. The 
method has three components: guidelines, language, and tools, which we briefly 
discuss now. 

5.2.1. Guidelines 
A specification is constructed in three parts: a dictionary, a signature, and an 

axiomatisation. These three parts represent various aspects of a specification: 
intention, structure, and content. 

5.2.1.1. Dictionary. This is a list of concepts accompanied by descriptions. A 
description explains in informal terms what is covered by the concept. Other 
(optional) parts are examples, motivation and additional information for each 
concept. 

5.2.1.2. Signature. The first step towards formalisation is choosing the identifiers 
(names in the final specification) and their types for the concepts in the dictionary. 
Names can only refer to sorts, individual objects and functions. The semantics of 
the names are (initially) given by informal axioms stated in natural language. 
Diagrams play an important role in the construction of the signature. An example 
is given below. 
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5.2.1.3. Ax-iomatisution. The formalisation is completed by adding formal axioms. 
The axioms must be such that the properties described in the dictionary and the 
corresponding informal axioms are satisfied. 

5.2.2. Language 
This is the formal specification language AFSL (see Section 5.3). 

5.2.3. Tools 
When working with large specifications (the FAN specification contains 1300 

names in ca. 90 modules, in total more than 3000 lines of code), the use of tools 
becomes inevitable. Within the FSA-project several tools have been developed, and 
for the FAN-project we used and experimented with the following tools. 
l A parser and type-checker, implemented in the functional programming lan- 

guage SML [19]. 
l An interface with the graph visualisation system da Vinci developed at the 

University of Bremen (see [7]). It is used to generate diagrams from the signature 
part of the specification, displaying information on object and function names, 
their types, and sub-typing relations. Diagrams serve to give a comprehensive 
view of the ontology embodied in the signature. 

l AWK programs and UNIX shell scripts were used to manipulate the large 
number of files (every module is a separate file), and for the extraction of 
(LA)TEX and AFSL files from a general file-format (containing both formal 
specification and documentation). 

5.3. The formal specijication language AFSL 

AFSL (almost formal specification language; see [lo]) is an extension of first-or- 
der predicate logic. Some of the additional ingredients are: a typing system with 
subtyping, inheritance and partial functions; a module mechanism with parametri- 
sation; optional use of semi-formal terms. AFSL is designed by Erik Saaman and 
is inspired on the specification language COLD [4] and on object orientation ([21]). 

The basic building blocks of an AFSL specification are parametrised modules. In 
a module, we can introduce sort, subsort, object and function names, using the 
keywords SORT, SUBSORT, OBJ, FUNC, respectively. These name introductions 
span the local signature of a module. Signature elements can also be imported from 
other modules. The signature elements can then be used in axioms which the 
elements must satisfy. Variables ranging over some sort can be introduced by 
declarations (keyword DECL). These variable are used in existential and universal 
quantification. 

5.3.1. Example (from the knowledge base) 
Suppose we have a domain of three sorts Magnitudes, TimePointS, and 

QuantityS. We introduce one object in Magnitudes, viz. PArtM. For Magni- 
tudes we have a partial function Value that yields an element of QuantityS for 
a given timepoint. The application of Value is only defined when a magnitude is 
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measured. To indicate this we have the boolean-valued function Measured. In 
AFSL., this is written down as follows: 

SORT Magnitudes 
SORT TimePointS 
SORT QuantityS 

OBJ PArtM: Magnitudes 

FUNC Value: Magnitudes, TimePointS->PARTIALmQuantityS 

FUNC Measured: Magnitudes->BoolS 

Subsorts are declared with the < < < symbol. In the example, we could 
introduce the sort Parameters, of which Magnitudes is a subsort: 

SORT Parameters 
SORTMagnitudeS< < <Parameters 

We can declare variables and state an axiom: 

DECL mag : Magni tudeS 
DEC:; tp : TimePointS 

AXIOM FORALL mag (EXISTS tp (Value (mag, tp) = / =Dn&f) ) 

5.3.2. Modules and parametrisation 
An AFSL construction often used in the FAN specification is the module 

mechanism with indexed names, which provides a kind of higher-order functions. 
We illustrate it with a module CourseM with parameter X. It imports the module 
TimeM, which introduces the sort TimePointS. 

MODULE CourseM [Xl 

SORT X 
SORT CourseS[Xl 

IMPORT TimeM 

FUNC At: CourseS[X], TimePointS->X 

ENDMODULE 

Now the instantiation with QuantityS and BoolS results in the introduction of 
IWO sorts, each with a function At: 

SORT CourseS[QuantityS] 
SORT CourseS[BoolSl 

FUNC At: CourseS[QuantityS], TimePointS->QuantityS 
FUNC At: CourseS[BoolS], TimePointS->BoolS 
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5.4. Dictionary 

The dictionary of FAN is given by Rotterdam in [lo], Ch. 6. It provides informal 
but systematic descriptions of concepts in FAN. An example: 

Magnitude 

Description. A magnitude is a parameter (see parameter) of the patient or of equipment 
used in the operation that can have a quantitative value. Like with any kind of parameter, 
courses-of-value (see course-of-value) are associated with a magnitude for each world-of- 
reasoning (see world-of-reasoning). In the case of magnitudes, these courses are signals 
(see signal), that is the values of the course are quantities (see quantity). 

Examples. Examples of magnitudes applying to the patient are heart rate and systolic- 
bloodpressure. An example of a magnitude applying to the heart-lung-machine (equip- 
ment) is the line-pressure; the pressure by which the blood is pumped into the patient. 

The dictionary serves as a point of reference for the construction of the 
knowledge base. 

5.5. The structure of the knowledge base 

We distinguish three parts of the knowledge base: data-types (representing 
medical parameters), operations (for arithmetics and abstraction) and relations 
(representation of causal and has-part links). 

5.5.1. Data types 
To structure the domain ontology, we identify three classes of sorts: value sets 

(contain basic values), COVs (courses of value, modeling basic values as a function 
of time), and parameters (the relevant properties of a patient). 

The three value sets are: 

SORT Quant i tyS 

SORT QualityS 

SORT BoolS 

They yield three COVs, defined as sets of functions from timepoints to some value 
set: 

SORT Signals --- --- FunctionS[TimePointS, QuantitySl 

SORT DiscreteSignalS === FunctionS[TimePointS, QualitySl 

SORT Conditions --- --- FunctionS[TimePointS, BoolS] 

A parameter is a COV with some modality, indicating its status: actual, target 
(indicating the medically ideal value) or default (indicating a value that can be used 
if no measurement data is available). ModalityS is the sort containing these three 
modalities. 
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SORT Magnitudes = = = FunctionSlModalityS, Signals] 
SORT Levels === FunctionS[ModalityS, DiscreteSignaLS] 
SORT Phenomenons === FunctionS[ModalityS, ConditionSI 

So magnitudes represent parameters with numerical values (typically measurement 
data, for example blood-pressure); levels are used to model discrete parameters (like 
anaest:hesia-depth or ventilation); phenomena model ‘yes/no-parameters’ (e.g. the 
presence of high blood pressure). Phenomena form the basis for diagnostic reason- 
ing. 

A p:henomenon is a condition which can be present or absent for the patient 
under treatment (e.g. gender, or the presence of a pupil reflex). Several phenomena 
can be defined in terms of the quantitative or qualitative value of a magnitude. 
Phenomena applying to the values of multiple magnitudes can be defined with 
has-part relations by means of which simple phenomena can be combined into 
more comprehensive ones. 

5.5.2. Discretisation 
The usual arithmetical operations and order relations are extended in a straight- 

forward way to quantities, signals and magnitudes, with obvious restrictions: e.g. 
only quantities of the same dimension can be added or compared. Likewise, the 
logical operations are extended to conditions and phenomena. For qualities, we 
introduce the following total order: 

TooLow<Decreased<Normal<Increased<TooHigh 

This order is extended to discrete signals and levels. 
The isecond type of operations is the discretisation of quantities to qualities. We 

define the function Discretise to perform the discretisation of a quantity 
according to four quantities that act as bounds: 

FUNC Discretise: QuantityS, QuantityS, QuantityS, QuantityS, 
QuantityS->QualityS 

The axiomatisation of this function is straightforward: the first four arguments 
(which are assumed to be in increasing order) determine five intervals correspond- 
ing with the five discrete values, the last argument is the quantity to be discretised. 
Using Discretise, we also defined a relative discretiser RelDiscretise which 
uses a reference quantity and four scaling factors determining the bounds. 

Discretise and RelDiscretise are extended to signals and magnitudes. 
Observe that this also applies to the first four arguments, so we can apply 
time-dependent discretisation to signals. This is useful e.g. when discretising mea- 
surements of body temperature during heart operations, where artificial lowering of 
body temperature is applied: a value of 35°C will be considered Decreased when 
the operation starts, but it is far TooHigh when cooling has started. 
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5.5.3. Diagnostic reasoning 
Diagnostic knowledge is mainly formulated in terms of relations between phe- 

nomena. Two kinds of relations play a role here: causal relations (between causes 
and effects), and has-part relations (between syndromes or symptom complexes and 
their constituents). The distinction between these two kinds corresponds with a 
difference in medical knowledge: in case of a has-part relation, one has to do with 
a collection of symptoms which is supposed to have a common cause that has not 
been discovered yet; in case of a causal relation, the underlying disease is known as 
a specific entity, not merely the collection of symptoms it causes. 

Associated with each relation is a strength. The possible strengths arefacultatiue, 
obligatory, and pathognomonic. Facultative denotes a positive correlation between 
two phenomena, obligatory indicates an implication, and pathognomonic is used to 
indicate a bi-implication between two phenomena. 

For the formalisation of relations there are two options. We can model relations 
directly as boolean-valued functions, or we can objectify them by introducing 
special sorts for links. We have chosen for the last option for the following reasons: 

Anaesthesiologists tend to reason about relations as objects. The presence or 
absence of a causal relation (for example some kind of reflex) is an information 
item itself. 
When relations are objects, it is easier to classify them, for example by introduc- 
ing an attribute for strength. 
Reasoning with the relations can now be described on a higher level of 
abstraction. The relations are then parameters of rules. 

To model this, we introduce two link sorts as subsort of Phenomenons, the sort 
LinkStrengthS containing three values, and two functions to create links: 

SORT LinkStrengthS 

OBJ Facultative : LinkStrengthS 
OBJ Obligatory : LinkStrengthS 
OBJ Pathognomonic : LinkStrengthS 

IMPORT TotalOrdered[LinkStrengthS] 

AXIOM Facultative <Obligatory 

AXIOMObligatory <Pathognomonic 

SORT CausLinkS < <<Links 

SORT NasPartLinkS < <<Links 

FUNC Causes: Phenomenons, Phenomenons, LinkStrengthS 

->PARTIAL-CausLinkS 

FUNC HasPart: Phenomenons, Phenomenons, LinkStrengthS 

->PARTIAL-HasPartLinkS 

Fig. 1 visualises the structure for diagnostic reasoning. The dotted lines indicate the 
subsort relations between links. 



G.R. Renardel de Lavalette et al. /ArtiJicial Intelligence in Medicine 11 (1997) 189-214 203 

Fig. 1. Signature diagram for diagnostic reasoning. 

5.6. The contents of the knowledge base 

The knowledge base contains the formalisation of knowledge obtained from 
interviews and knowledge from physiological handbooks. The knowledge is divided 
in three types: general knowledge, knowledge for value abstraction, and knowledge 
for diagnosis. 

5.61. General knowledge 
The general knowledge is shared by all tasks, i.e. it includes the introduction of 

all the measured parameters. Besides these, generally applicable rules are for- 
malised, e.g. ‘during the perfusion period, disconnection is unacceptable and airway 
obstruction is undesirable’. This is represented in the knowledge base as follows: 

OBJ Disconnection: Phenomenons 

OBJAirway Obstruction: Phenomenons 

AXIOM Contains(PerfusionPeriod, tp) 
== > (Valuation Disconnection) At tp=Unacceptable 

AXIOM Contains(PerfusionPeriod,tp) 

== > (Valuation AirwayObstruction) At tp = Undesirable 

5.6.2. Discretisation 
For value abstraction, we need to perform operations on magnitudes. They 

include operations for discretisation and physiological constraints. So the knowl- 
edge item ‘cardiac output = heart rate x stroke volume’ is formulated in the knowl- 
edge base as: 
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OBJ CO: MagnitudeS[VolumeTime] 
OBJ HR: MagnitudeS[Frequency] 
OBJ SV: MagnitudeS[Volume] 

AXIOM Everywhere (CO Param [==I (HR Param [*I SV)) 

5.6.3. Diagnostic reasoning 
The diagnostic task needs a specification of a causal network. This network is 

given by providing a number of causal and has-part links. As an example of the 
specification of causal relations, we present the formalisation of ‘too high mean 
arterial blood pressure can cause edema’: 

OBJ PArtM: MagnitudeS[Pressure] 
OBJ Edema: Phenomenons 

AXIOM Everywhere Causes((Discrete(PArtM)==TooHigh) 
, Edema 

2 Facultative) 

The knowledge item ‘increased mean arterial blood pressure is a symptom of 
increased stress’ can be formalised as: 

OBJ Stress: Levels 

AXIOM EveryWhere HasPart(Stress> =Increased 

I (Discrete(PArtM) > =Increased) 
, Obligatory) 

5.7. Formalisation experience in FAN 

After the survey of the products of the formalisation process, we give a sketch 
of the formalisation process itself. This sketch takes the form of a rational 
reconstruction of the process, along the lines of our formalisation method. We 
have to admit that this is somewhat misleading in the sense that the actual 
formalisation did not always proceed as rationally as the method suggests; in 
fact, the method has been shaped after the experiences in FAN and other 
projects. 

The main sources for anaesthesiological knowledge are interviews and discus- 
sions with anaesthesiologists, and the existing CAROLA system. Other relevant 
sources are e.g. the Systbme International (physical dimensions and units [14]). 
These sources were the starting point for formalisation. A first attempt (by 
Rotterdam) used a special-purpose formal representation language, geared to the 
anaesthesiological domain. Later on, it was decided to work with the general- 
purpose formal specification language AFSL, in order to separate language de- 
sign and language use. AFSL was under construction at that time, a process that 
was strongly influenced by the experiences in using it in FAN and another 
formalisation project. 
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Much effort was consumed by the search for an appropriate ontology for FAN. 
With the term ontology we refer to the structure of basic concepts with which all 
relevant objects in a knowledge domain can be described. Examples of basic 
concepts for FAN are: physical dimensions, units and quantities, time, parameters 
(relevant medical concepts like blood pressure, temperature), signals, conditions, 
diagnoses, therapies, etc. In a formal specification, an ontology roughly corre- 
sponds with what is called a signature (see Section 5.3). 

In tlhe search for a good ontology, this signature has been restructured several 
times during the project. To have a somewhat stable starting point for the 
construction of the signature, a dictionary has been created, containing informal 
descriptions of the items in the ontology (this idea was adopted from the comple- 
mentary formalisation project involving Chomsky’s Minimalist Program). In order 
to visualise the signature (and hence the structure of the ontology), an interface 
between AFSL and the graph visualisation daVinci [7] has been developed. 

The separate presentation of the signature appeared useful during the develop- 
ment Iof the formal model. In later stages of the development, the signature 
definition and axiomatisation were combined in the presentation of the formal 
specification. 

The specification of the knowledge base is incorporated in the FAN report [lo], 
which is available via World Wide Web. A survey of FAN from a software 
engineering perspective is in [9]. 

5.8. Orher approaches in knowledge model&g 

Many of the existing knowledge modelling approaches (see [13] for a survey) 
make a distinction between the static knowledge to be modelled and the reasoning 
process that is to be performed using that static knowledge. For instance, in the 
KADS method [22,26], the domain layer is concerned with modelling static 
knowledge, while the inference and task layer deal with the reasoning process, by 
specifying respectively the legal inference steps that can be made using the knowl- 
edge and the control enforced over these inference steps. Similar distinctions exist 
in other knowledge modelling methods. 

Using the KADS terminology, AFSL is aimed at describing domain knowledge: 
it does not offer language elements to describe the reasoning process to be 
performed with this domain knowledge. In this section AFSL was used to specify 
the domain knowledge formally, while in Section 6 the diagnostic reasoning is 
described in semiformal mathematical and logical terms. These could be squeezed 
into an AFSL specification; however, a straightforward and more natural formali- 
sation requires an extension of AFSL with additional language constructs to 
describe the dynamics of the reasoning process. Steps in this direction are the 
languages KARL [5], ML2 [ll] and MLPM [6], all based on dynamic logic. (See 
[12] for a survey.) Compared with AFSL, these languages (with the exception of 
KARL) provide fewer modeling primitives for domain knowledge, in general only 
first-orrder logic. 
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6. Diagnosis 

A conventional definition of a diagnostic problem is a discrepancy between 
observed and expected behaviour of a system (or e.g. in the case of FAN, a 
patient). The diagnostic task is to find an explanation of this discrepancy. Such an 
explanation is a possible diagnosis; a differential diagnosis is a collection of possible 
diagnoses. 

In this section, we firstly formulate the diagnostic method that has been devel- 
oped in FAN, based on interviews with anaesthesiologists and on some of the 
literature on this subject (e.g. [20]). Then we present a general framework for 
diagnostic methods (see also [24]), which enables us to compare the method used 
here to other diagnostic methods described in the literature, which can be seen as 
instances of this framework. 

6.1. FAN diagnosis 

The following concepts of the knowledge structure discussed in Section 5 play a 
role in diagnosis. 

Phenomena, a sort containing possible observations (symptoms and signs) and 
explanations (diseases, syndromes and symptom complexes). 

Causal and has-part links between phenomena. These links are pairs of phenom- 
ena: the head in the role of cause (or whole, in the case of a has-part link), the tail 
in the role of effect (or part). Although the two kinds of links are different in nature 
(causal links have explanatory power, has-part links only have summarising power 
by relating a syndrome or a symptom complex to its constituting parts), we shall 
not distinguish between them in our diagnostic method, and refer to them as links. 

Strength levels of these links, viz. facultative, obligatory, and pathognomonic 
(ordered from weak to strong); their meaning will become clear below.We add some 
mathematical notation: 

PH (the collection of phenomena) 

PHC = p(PH) (the collection of sets of phenomena) 

FL E PH2 (the collection of facultative links) 

OL G PH’ (the collection of obligatory links) 

PL E PH2 (the collection of pathognomonic links) 

PH is assumed to be closed under negation: V~EPH(~~EPH). We write dFLo for 
(d,o)EFL, expressing that there is a facultative link between d and o. Analogously 
for OL and PL. 

A reasoning chain is a chain of causal and/or has-part links. Chains of links are 
lists of links with pair-wise corresponding head and tail. In the sequel, we are only 
interested in the first and last element in a chain. This leads to the transitive closure 
of a relation, defined as follows for an arbitrary relation R: 

R* = {(x,y) 1 3n 2 13a,... a,(x = a, A y = a, A a,Ra,R... Ra,)} 
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We deAne two operations involving relations: applying a relation to a set 

R’(X) = {Y I3xax&)l 

and inverting a relation 

RI-‘={(JJ,x)IxRy} 

The collections of (obligatory/pathognomonic) link chains are defined by: 

LC:=(FLuOLvPL)* 

OLC:= (OLV PL)* 

PLC:= PL* 

These definitions reflect the idea that the strength of a chain is the strength of its 
weakest link. 

We describe the diagnostic reasoning method used for FAN in two steps: first we 
define when a phenomenon complex D is a diagnosis for an observed phenomenon 
complex 0, then we define which of the diagnoses are put into the differential 
diagnosis. We put 

diag: PHC x PHC 
diag (D,O):= 0 E LC(D) 8z (completeness) 

OLC(D) G 0 & (O-correctness) 
PLC-‘(0) ED (P-correctness) 

We paraphrase the three components of this definition. 
Completeness: every observation is covered by the diagnosis, i.e. for each observa- 

tion, th.ere is a link chain from some element of the diagnosis to that observation. 
O-correct: all obligatory consequences of any phenomenon in the diagnosis are 

among the observations. 
P-correct: all phenomena that have a pathognomonic link chain towards an 

observation are in the diagnosis. Now we define the differential diagnosis, using two 
auxiliary functions. 

di f diag: PHC+ p(PHC) 

difdiag(O)=mincons (min(diag- ‘(D,O))) 
min, mincons: p(PHC) -+ p(PHC) 

min(X) = {DEX 1 VD’EX(/D 11 I 11D’11)} 

minc:ons(X) = {DEX 1 VD’eX(LC(D) E LC(D’))} 

So, min selects the diagnoses with minimal number of elements, then mincons 
takes only the diagnoses which are minimal w.r.t. inclusion of consequences. 

As an illustration, Fig. 2 gives a schematic example of observations and a 
diagnosis that matches them according to the given links. 
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P-n 
beyond mqulmd 

Fig. 2. Observations and a diagnosis that matches them according to the given links. 

The diagnosis consists of two phenomena; together they explain the observations 
via a layer of intermediate phenomena. The five phenomena in the intermediate 
layer also fulfill the criteria above, so they form a diagnosis, too, which is 
eliminated by min. Replacing $2 by phl also yields a diagnosis which will not be 
eliminated by min, but it does get rejected by mincons. 

6.2. A general diagnostic framework 

In [24] a general framework for diagnostic reasoning is proposed (in the sequel, 
we call it the framework). It is a generalisation of the spectrum of diagnosis 
definitions described by Console and Torasso [3], aiming to include a large variety 
of existing diagnostic reasoning methods. The framework describes diagnostic 
reasoning in terms of a number of parameters: a specific diagnostic reasoning 
method is obtained by instantiating each of the parameters. 

We compare the diagnostic method of FAN described above with the framework. 
We start with a paraphrase of the framework, adapting the notation of [24] to the 
description in the previous subsection. We use again the sets PH, PHC and 
introduce two new sets: 

KN (the collection of ‘knowledge sets’) 
SOL (the collection of solutions) 
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Elements of KN are sets of knowledge relevant for the diagnosis, but which does 
not have to be explained (unlike the observations). Possible components of such a 
set of knowledge are: information concerning causal and other relations between 
phenomena, contextual observations that do not have to be explained (e.g. gender 
and age of the patient), the vocabulary of the explanations that are to be found 
(e.g. the collection of all possible diagnoses). SOL contains all possible solutions 
(i.e. presentations of explanations). Now the diagnostic method can be represented 
as a function: 

&II: KN x PHC-+ SOL 
dm(K, 0) = sf(sel(es(K, 0))) 

Here 

s f : do(PHC) + SOL 
sel: ,p(PHC) + p(PHC) 

act as parameters of the framework. sf generates the solution form, when given a 
solution (we shall not use it here), and se1 selects the solution, i.e. the subset of 
preferred explanations, form the set of all explanations. es, the function yielding 
the set of explanations, is defined by 

es: KN x PHC+ g(PHC) 

es(K, 0) = {EEPHC 1 K, Et, cov(0) & (1) 

K, EY, A- & (2) 

K, Eu con(O)r,l & (3) 

E E voc(K)} (4) 

Here we have five other parameters: 

cov, con, voc: PHC+ PHC 

t,, k,: KN x PHC x PHC 

cov and con act on the set of observations, yielding phenomenon complexes that 
have to be covered by, respectively to be consistent with the explanations. voc 
yields the vocabulary of the explanations. Fr, I2 are (possibly different) entailment 
relations, stating that the knowledge and phenomena at the left hand side imply the 
phenomena on the right hand side. _L is used for expressing contradiction, in the 
following sense: 

K: Ekl = +PH(K, Et(p,y}) 

This finishes the definition of the diagnostic framework. We observe that it is 
parametrised by seven parameters: 

cov, con, II, t-,, voc, sel, sf 
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6.3. Comparing the diagnostic method with the framework 

We compare the diagnostic method of FAN with the framework by trying to find 
correspondences between components of the two definitions. As a result, we 
observe the following. 

1. mincons 0 min (0 denotes function composition) corresponds with sel. 
2. diag corresponds roughly with es: 

(a) the completeness condition corresponds with Eq. (1); 
(b) the O-correctness condition corresponds with Eq. (3). 

We consider the correspondence mentioned in 1 to be evident. In order to establish 
the other two, we need a few instantiations. 

K := (FL, OL, PL) 

cov(O):= 0 

con(O):= (1p IpEOBS- 0}, 

where OBS = (p,lp 1 3q qLp A XlrpLr) 

andL=K,uK,uK, 

K, Dl, Q := QS L*(D) 

K, Db2 Q := Qs(K2uKj)*(D) 

(K,, denotes the nth part of K.) In words: the knowledge relevant for the diagnosis 
consists of the facultative, obligatory and pathognomonic links; all observations 
have to be covered; every diagnosis has to be consistent with the negation of absent 
observations; t, expresses derivability using all links, t, idem with restriction to the 
obligatory and pathognomonic links. 

One easily observes that the definition of l-i establishes the correspondence 2a. 
To see the correspondence of 2b, we argue as follows. 

K, D u con(O) V, I 

z {definition of K, OLC, con and l-2 I) 

+qcPH{q, ‘q} E OLC*(Du {lp I~EOBS- 0)) 

= { OLC distributes over u and leaves subsets of OBS unchanged} 

+qePH{q, ‘q) E (OLC*(D)u {lp I~EOBS- 0)) 

z (7-q = q and OBS is closed under l} 

+q~OBS(q~OLC*(D) & q$O) 

E {predicate logic} 

VqEOBS(qeOLC*(D)-tqEO) 

E {assuming 0 c OBS) 

OLC*(D) c 0 
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So we do have a partial correspondence between the method and the framework. 
Both might be extended in order to complete the correspondence. We discuss some 
possible extensions. 

6.3.1. Extending the FAN diagnostic method 
Eq. (2) in the definition of es states the consistency of the explanation under 

consideration. In the context of FAN, this comes down to the absence of contra- 
dicting consequences of a diagnosis. Since facultative links are included here, it is 
questionable whether such a requirement would be appropriate. When facultative 
links are excluded, consistency of the diagnosis follows from Eq. (2). 

Eq. (4) in the definition of es restricts explanations to a specific vocabulary. This 
is a natural requirement, and we think it should (and will) be added to FAN. As a 
first try, we might take 

abm(L) = ~EPH I3qpLq) 

i.e. the collection of heads of links, as a vocabulary. 
s f in the framework definition transforms the solution in a specific presentation, 

and this is left unspecified in FAN. Case studies with system prototypes will be 
required to find out appropriate representations of differential diagnoses in FAN. 

6.3.2. Extending the diagnostic framework 
P-correctness specifies the minimal content of a diagnosis: it must contain all 

phenomena pathognomonically linked with any observation. There is no directly 
comparable condition in the framework, although it can be brought into Eq. (1) by 
adapting the definition of t 1. This results in a generalisation of t i transcending the 
usual derivability relation. 

One might generalise the framework further by replacing the definition of es by: 

es(K, 0): = (E 1 R,(K, 0, E) & R2(K, 0, E)} 

Here I:,, R,: KN x PHC x PHC are two relations satisfying: 

R,(K,O,E)&EcE’*R,(K,O,E’) 

R,(K, 0, E) & E’ G E + R,(K, 0, E’) 

So R, is monotonic in its last argument, and R, antimonotonic. 
Eq. (1) is an example of a monotonic condition. Eq. (2) and Eq. (3) are 

antimonotonic conditions, and so is their conjunction. So the new definition of es 
above indeed generalises the diagnostic framework. 

7. Prototype 

Recently, the construction of a prototype for the data abstraction and diagnosis 
tasks of FAN has been undertaken by Nisaar Jaggoe as part of his Master’s thesis 
work at the Free University in Amsterdam. The main purpose of building the 
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prototype is the validation of the existing specifications in FAN, especially the 
adequacy of the knowledge structures and the diagnostic method. A secondary goal 
is the ability to show a project product that appeals more directly, e.g. to 
anaesthesiologists, than a collection of specification files. The prototype is restricted 
to the perfusion phase of the operation (during which the heart lung machine takes 
care of the blood circulation of the patient) and to the diagnosis of five specific 
phenomena: too low and too high blood balance, disconnection, centralisation, and 
stress. 

The prototype is a Prolog program that works off-line on real patient data from 
the CAROLA system. The implementation of the value abstraction tasks makes use 
of predicate testing (directly available in Prolog) and term rewriting, which is 
implemented in Prolog for this purpose. For the diagnostic task, both forward and 
backward chaining are applied. 

Although the functionality of the prototype is rather limited (due to the restricted 
availability of specific formalised anaesthesiological knowledge), the implementa- 
tion process showed that the construction of a system based on the formal 
specification is feasible. Validating the output of the prototype against experts (i.e. 
anaesthesiologists) is in progress. 

8. Related research 

There is some resemblance between FAN and the YAQ approach [25]. YAQ 
aims at diagnosis, prediction and therapy management, based on an ontology for 
modelbased reasoning. Like FAN, it also uses a combination of qualitative and 
quantitative reasoning, and it implements associative (has-part) and model-based 
(causal-relations) diagnosis. 

Some of the principles behind FAN are shared with [23] where it is conjectured 
that three major models of diagnosis exist: causal, probabilistic and case-based. The 
approach taken in FAN globally support the causal and probabilistic model. [23] 
also stresses that artificial intelligence systems should be regarded as a supporting 
instrument rather than as a decision making device. This is in accordance with the 
approach taken in FAN. 

The role of first-order logic in medical reasoning is stressed in [17]. Our language 
AFSL is based on first-order logic, and its module mechanism is used for the 
definition of re-usable specifications. They can be used in different architectures for 
support systems [18]. Such reusable components are a prerequisite for widespread 
adoption of AI systems in medicine. [17] also advocates the use of theorem provers 
for providing decision support in medicine; the usage of Prolog for building of the 
FAN prototype demonstrates that this is indeed a viable option. 

An aspect of FAN that needs some further study is temporal reasoning, e.g. 
using temporal models as studied in [l] and [16]. The FAN knowledge-structure 
deals with time explicitly, but this feature has not been used yet in diagnostic 
reasoning. 
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9. Concluding remarks 

First experiences with the development of the prototype indicate that the 
structure of the specification of the knowledge is reasonably adequate. However, on 
some points (e.g. time normalisation), the specification is not yet complete. More- 
over, d.eveloping the prototype has contributed to describing and structuring the 
relevant tasks and subtasks of the decision support system. 

Generally speaking, the declarative character of the specification (due to the 
purely algebraic character of AFSL) leaves the control aspects of the system 
unspecified. So an extension of AFSL in which these control aspects can be 
formalised is desirable. Other remaining tasks are the formalisation of therapy 
advice, simulation and prediction. It is expected that the KADS method [22,26] will 
be appropriate for developing the task specifications required here. 

Interesting research in another direction is the application of data mining 
techniques to the contents of the CAROLA database. It is reasonable to expect that 
the outcome of this research will be directly applicable in a decision support system 
for ana.esthesiology. 
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