9 research outputs found

    Rap2A links intestinal cell polarity to brush border formation

    No full text
    The microvillus brush border at the apex of the highly polarized enterocyte allows the regulated uptake of nutrients from the intestinal lumen. Here, we identify the small G protein Rap2A as a molecular link that couples the formation of microvilli directly to the preceding cell polarization. Establishment of apicobasal polarity, which can be triggered by the kinase LKB1 in single, isolated colon cells, results in enrichment of PtdIns(4,5)P(2) at the apical membrane. The subsequent recruitment of phospholipase D1 allows polarized accumulation of phosphatidic acid, which provides a local cue for successive signalling by the guanine nucleotide exchange factor PDZGEF, the small G protein Rap2A, its effector TNIK, the kinase MST4 and, ultimately, the actin-binding protein Ezrin. Thus, epithelial cell polarization is translated directly into the acquisition of brush borders through a small G protein signalling module whose action is positioned by a cortical lipid cue

    A New Oxygen Uptake Measurement Supporting Target Selection for Endobronchial Valve Treatment

    No full text
    Contains fulltext : 215677.pdf (publisher's version ) (Open Access)BACKGROUND: Adequate target lobe selection for endobronchial valve (EBV) treatment in patients with severe emphysema is essential for treatment success and can be based on emphysema destruction, lobar perfusion, lobar volume, and collateral ventilation. As some patients have >1 target lobe for EBV treatment, we were interested whether we could identify the least functional lobe. OBJECTIVES: The objective of this study was to investigate the relationship between endoscopic lobar measurement of oxygen uptake, lobar destruction, and vascular volume, and whether this could help in identifying the least functional lobe and thus optimal target for EBV treatment. METHOD: We prospectively included patients who were scheduled for EBV treatment in our hospital. A customized gas analysis setup was used to measure lobar O2 uptake after lobar balloon occlusion. Quantitative CT analysis was performed to assess the degree of emphysematous destruction and lobar arterial and venous volumes. RESULTS: Twenty-one (5 male/16 female) patients with emphysema (median age 63 years, FEV1 25% of predicted, residual volume 234% of predicted) were included, and 49 endoscopic lobar measurements were performed. A lower O2 uptake significantly correlated with a higher degree of emphysematous lobar destruction (Spearman's rho: 0.39, p < 0.01), and lower arterial and venous vascular volumes of the lobes (-0.46 and -0.47, respectively; both p < 0.001). CONCLUSIONS: Endoscopic measurement of lobar O2 uptake is feasible in patients with emphysema. Measurement of lobar O2 uptake helped to identify the least functional lobe and can be used as additional tool for EBV target lobe selection

    Flood Control: How Milk-Derived Extracellular Vesicles Can Help to Improve the Intestinal Barrier Function and Break the Gut-Joint Axis in Rheumatoid Arthritis

    Get PDF
    Many studies provided compelling evidence that extracellular vesicles (EVs) are involved in the regulation of the immune response, acting as both enhancers and dampeners of the immune system, depending on the source and type of vesicle. Research, including ours, has shown anti-inflammatory effects of milk-derived EVs, using human breast milk as well as bovine colostrum and store-bought pasteurized cow milk, in in vitro systems as well as therapeutically in animal models. Although it is not completely elucidated which proteins and miRNAs within the milk-derived EVs contribute to these immunosuppressive capacities, one proposed mechanism of action of the EVs is via the modulation of the crosstalk between the (intestinal) microbiome and their host health. There is increasing awareness that the gut plays an important role in many inflammatory diseases. Enhanced intestinal leakiness, dysbiosis of the gut microbiome, and bowel inflammation are not only associated with intestinal diseases like colitis and Crohn's disease, but also characteristic for systemic inflammatory diseases such as lupus, multiple sclerosis, and rheumatoid arthritis (RA). Strategies to target the gut, and especially its microbiome, are under investigation and hold a promise as a therapeutic intervention for these diseases. The use of milk-derived EVs, either as stand-alone drug or as a drug carrier, is often suggested in recent years. Several research groups have studied the tolerance and safety of using milk-derived EVs in animal models. Due to its composition, milk-derived EVs are highly biocompatible and have limited immunogenicity even cross species. Furthermore, it has been demonstrated that milk-derived EVs, when taken up in the gastro-intestinal tract, stay intact after absorption, indicating excellent stability. These characteristics make milk-derived EVs very suitable as drug carriers, but also by themselves, these EVs already have a substantial immunoregulatory function, and even without loading, these vesicles can act as therapeutics. In this review, we will address the immunomodulating capacity of milk-derived EVs and discuss their potential as therapy for RA patients. REVIEW CRITERIA: The search terms "extracellular vesicles", "exosomes", "microvesicles", "rheumatoid arthritis", "gut-joint axis", "milk", and "experimental arthritis" were used. English-language full text papers (published between 1980 and 2021) were identified from PubMed and Google Scholar databases. The reference list for each paper was further searched to identify additional relevant articles

    Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex.

    Get PDF
    The human Lkb1 kinase, encoded by the ortholog of the invertebrate Par4 polarity gene, is mutated in Peutz-Jeghers cancer syndrome. Lkb1 activity requires complex formation with the pseudokinase Strad and the adaptor protein Mo25. The complex can induce complete polarization in a single isolated intestinal epithelial cell. We describe an interaction between Mo25alpha and a human serine/threonine kinase termed Mst4. A homologous interaction occurs in the yeast Schizosaccharomyces pombe in the control of polar tip growth. Human Mst4 translocates from the Golgi to the subapical membrane compartment upon activation of Lkb1. Inhibition of Mst4 activity inhibits Lkb1-induced brush border formation, whereas other aspects of polarity such as the formation of lateral junctions remain unaffected. As an essential event in brush border formation, Mst4 phosphorylates the regulatory T567 residue of Ezrin. These data define a brush border induction pathway downstream of the Lkb1/Strad/Mo25 polarization complex, yet separate from other polarity events.
    corecore