183 research outputs found

    Phase Behavior of Weakly-segregated Multiblock Copolymers with Two-scale Periodic Architecture

    Get PDF
    The phase behavior of a melt of periodic two-scale multiblock copolymers has been theoretically studied in the framework of the Weak-Segregation Limit theory. The effect of the structural symmetry of the macromolecules on the vertex functions of the Landau free energy expansion is considered in detail. The existence of a thermodynamically stable mesophase with a two length-scale space periodicity has been revealed for a melt of monodisperse periodic heteropolymers

    Association behavior of binary polymer mixtures under elongational flow

    Get PDF
    The influence of elongational flow on the association behavior of binary mixtures of functionalized polymers capable of forming single reversible orientationally dependent bonds, such as hydrogen bonds, is studied analytically. Applying a mean-field approach with an external potential representing the effect of the elongational flow, the orientation distribution functions for the dumbbell model and the freely jointed model of a polymer chain were obtained. Two opposite factors determine the association of “linear” diblock copolymerlike chains: the unfavorable extra stretching under flow of associated polymer chains and the favorable orientation of the chains (segments) along the flow direction. The former dominates and the fraction of associated “linear” chains decreases with increasing flow rate. For mixtures of polymers which are capable of forming associated T-chains, the association also decreases, however, more slowly, and this time due to unfavorable orientational effects. If the formation of associated linear and T-polymers as well as complex linear/T-polymers is possible, a strong preference for the formation of associated T-chains is found. At high flow rates any type of association becomes unfavorable

    Random Copolymer Effect in Self-Assembled Hydrogen-Bonded P(S-co-4VP)(PDP) Side-Chain Polymers

    Get PDF
    Random copolymers of styrene and 4-vinylpyridine P(S(1-x)-co-4VP(x)) were synthesized to study the effect of the random copolymer "repulsion" on the self-assembly in hydrogen-bonded complexes with pentadecylphenol (one PDP molecule per 4VP group). The major trends observed as a function of the fraction of styrene monomers 1 - x in the random copolymer are a decrease in order-disorder transition temperature, T(ODT), and a decrease in the periodic length scale of the ordered lamellar state. The lower T(ODT) results from a partial shielding in the disordered state of the highly unfavorable styrene/4-vinylpyridine interactions by the PDP alkyl tails. The reduced layer thickness in the ordered state is due to the relaxation into a more coil-like conformation of the alkyl tails of the PDP amphiphiles, made possible by the presence of styrene units. The self-assembly properties of P(S(1-x)-co-4VP(x))(PDP)(1.0) are compared with those of the lamellar self-assembled homopolymer-based P4VP(PDP)(x) system, where x denotes the number of PDP molecules per 4VP repeat unit. As in P(S(1-x)-co-4VP(x))(PDP)(1.0), in P4VP(PDP)(x) also only a fraction x of the total number of monomers of the macromolecule may potentially hydrogen bond with PDP molecules at any given instant. In contrast to P(S(1-x)-co-4VP(x))(PDP)(1.0), for P4VP(PDP),, however, the long period is found to increase for decreasing values of x
    • …
    corecore