311 research outputs found

    Insights into Broad-Specificity Starch Modification from the Crystal Structure of Limosilactobacillus Reuteri NCC 2613 4,6-α-Glucanotransferase GtfB

    Get PDF
    GtfB-type α-glucanotransferase enzymes from glycoside hydrolase family 70 (GH70) convert starch substrates into α-glucans that are of interest as food ingredients with a low glycemic index. Characterization of several GtfBs showed that they differ in product- and substrate specificity, especially with regard to branching, but structural information is limited to a single GtfB, preferring mostly linear starches and featuring a tunneled binding groove. Here, we present the second crystal structure of a 4,6-α-glucanotransferase (Limosilactobacillus reuteri NCC 2613) and an improved homology model of a 4,3-α-glucanotransferase GtfB (L. fermentum NCC 2970) and show that they are able to convert both linear and branched starch substrates. Compared to the previously described GtfB structure, these two enzymes feature a much more open binding groove, reminiscent of and evolutionary closer to starch-converting GH13 α-amylases. Sequence analysis of 287 putative GtfBs suggests that only 20% of them are similarly “open” and thus suitable as broad-specificity starch-converting enzymes

    Goat Milk Oligosaccharides:Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides

    Get PDF
    Human milk is considered the golden standard in infant nutrition. Free oligosaccharides in human milk provide important health benefits. These oligosaccharides function as prebiotics, immune modulators, and pathogen inhibitors and were found to improve barrier function in the gut. Infant formulas nowadays often contain prebiotics but lack the specific functions of human milk oligosaccharides (hMOS). Milk from domesticated animals also contains milk oligosaccharides but at much lower levels and with less diversity. Goat milk contains significantly more oligosaccharides (gMOS) than bovine (bMOS) or sheep (sMOS) milk and also has a larger diversity of structures. This review summarizes structural studies, revealing a diversity of up to 77 annotated gMOS structures with almost 40 structures fully characterized. Quantitative studies of goat milk oligosaccharides range from 60 to 350 mg/L in mature milk and from 200 to 650 mg/L in colostrum. These levels are clearly lower than in human milk (5-20 g/L) but higher than in other domesticated dairy animals, e.g., bovine (30-60 mg/L) and sheep (20-40 mg/L). Finally, the review focuses on demonstrated and potential functionalities of gMOS. Some studies have shown anti-inflammatory effects of mixtures enriched in gMOS. Goat MOS also display prebiotic potential, particularly in stimulating growth of bifidobacteria preferentially. Although functional studies of gMOS are still limited, several structures are also found in human milk and have known functions as immune modulators and pathogen inhibitors. In conclusion, goat milk constitutes a promising alternative source for milk oligosaccharides, which can be used in infant formula

    Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70

    Get PDF
    Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.</p

    Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugar-Based Molecules that Target Bacterial Glucosyltransferase

    Get PDF
    We applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure-based strategy, we designed a series of 36 glucose- and maltose-based acylhydrazones as substrate mimics. Synthesis of the required mono- and disaccharide-based aldehydes set the stage for DCC experiments. Analysis of the dynamic combinatorial libraries (DCLs) by UPLC-MS revealed major amplification of four compounds in the presence of GTF180. Moreover, we found that derivatives of the glucose-acceptor maltose at the C1-hydroxy group act as glucose-donors and are cleaved by GTF180. The synthesized hits display medium to low binding affinity (KD values of 0.4–10.0 mm) according to surface plasmon resonance. In addition, they were investigated for inhibitory activity in GTF-activity assays. The early-stage DCC study reveals that careful design of DCLs opens up easy access to a broad class of novel compounds that can be developed further as potential inhibitors

    Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation

    Get PDF
    The wild-type Gtf180-ΔN glucansucrase enzyme from Lactobacillus reuteri 180 was found to catalyze the α-glucosylation of the steviol glycoside rebaudioside A, using sucrose as glucosyl donor in a transglucosylation process. Structural analysis of the formed products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that rebaudioside A is specifically α-d-glucosylated at the steviol C-19 β-d-glucosyl moiety (55% conversion). The main product is a mono-(α1 → 6)-glucosylated derivative (RebA-G1). A series of minor products, up to the incorporation of eight glucose residues, comprise elongations of RebA-G1 with mainly alternating (α1 → 3)- and (α1 → 6)-linked glucopyranose residues. These studies were carried out in the context of a program directed to the improvement of the taste of steviol glycosides via enzymatic modification of their naturally occurring carbohydrate moieties

    Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its taste profile

    Get PDF
    The adverse health effects of sucrose overconsumption, typical for diets in developed countries, necessitate use of low-calorie sweeteners. Following approval by the European Commission (2011), steviol glycosides are increasingly used as high-intensity sweeteners in food. Stevioside is the most prevalent steviol glycoside in Stevia rebaudiana plant leaves, but it has found limited applications in food products due to its lingering bitterness. Enzymatic glucosylation is a strategy to reduce stevioside bitterness, but reported glucosylation reactions suffer from low productivities. Here we present the optimized and efficient alpha-glucosylation of stevioside using the mutant glucansucrase Gtf180-Delta N-Q1140E and sucrose as donor substrate. Structures of novel products were elucidated by NMR spectroscopy, mass spectrometry and methylation analysis; stevioside was mainly glucosylated at the steviol C-19 glucosyl moiety. Sensory analysis of the alpha-glucosylated stevioside products by a trained panel revealed a significant reduction in bitterness compared to stevioside, resulting in significant improvement of edulcorant/organoleptic properties
    • …
    corecore