7 research outputs found

    Comparing Farm Biosecurity and Antimicrobial Use in High-Antimicrobial-Consuming Broiler and Pig Farms in the Belgian–Dutch Border Region

    Get PDF
    As antimicrobial resistance is a worldwide problem, threatening both livestock and public health, understanding the drivers for resistance in different settings and countries is essential. Therefore, 30 pig and 30 poultry farms with country-specific high antimicrobial use (AMU) were recruited in the Belgian–Dutch border region. Information regarding production parameters, farm characteristics, biosecurity, and AMU was collected. On average, more biosecurity measures were implemented on Dutch farms, compared to Belgian farms in both animal species. In addition, more opportunities were found to increase the level of internal biosecurity compared to external biosecurity in both countries. AMU, quantified as treatment incidence (TI), differed marginally significant between broiler farms in Belgium and the Netherlands (median BE: 8; NL: 3), whereas in weaned piglets (median BE: 45 and NL: 14) and finishing pigs (median BE: 5 and NL: 1), there was a substantial difference in AMU between farms from both countries. Overall, Dutch farms showed less between-farm variation in TI than did Belgian farms. In both poultry and pig production, the majority of antimicrobials used were extended-spectrum penicillins (BE: 32 and 40%; NL: 40 and 24% for poultry and pigs, respectively). Compared to Belgian farms, Dutch poultry farms used high amounts of (fluoro)quinolones (1 and 15% of total AMU, respectively). None of the production parameters between broiler farms differed significantly, but in pig production, weaning age in Belgian farms (median: 23) was lower than in Dutch farms (median: 27). These results indicate considerable room for improvement in both countries and animal species. Farm-specific preventive strategies can contribute to lowering the risk for animal disease and hence the need for AMU

    Coaching Belgian and dutch broiler farmers aimed at antimicrobial stewardship and disease prevention

    No full text
    A reduction in antimicrobial use (AMU) is needed to curb the increase in antimicrobial resistance in broiler production. Improvements in biosecurity can contribute to a lower incidence of disease and thereby lower the need for AMU. However, veterinary advice related to AMU reduction or biosecurity is often not complied with, and this has been linked to the attitudes of farmers. Behavior change promoted by coaching may facilitate uptake and compliance regarding veterinary advice. Thirty broiler farms in Belgium and the Netherlands with high AMU were included in this study for 13 months. For each farmer, the attitude towards AMU reduction was quantified using an adjusted Awareness, Desire, Knowledge, Ability, and Reinforcement (ADKAR(R)) change management model, and farm biosecurity was assessed with the Biocheck.UGent((TM)) tool. Subsequently, farmers were coached to improve disease prevention and antimicrobial stewardship. After the individual coaching of farmers, there was a change in their attitudes regarding AMU, reflected by an increase in ADKAR(R) scores. Biosecurity levels improved by around 6% on average, and AMU was reduced by 7% on average without negative effects on performance parameters. Despite these improvements, no significant association could be found between higher ADKAR(R) scores and lower AMU. Further investigation into sociological models is needed as a tool to reduce AMU in livestock production

    ESBL-Producing, Carbapenem- and Ciprofloxacin-Resistant Escherichia coli in Belgian and Dutch Broiler and Pig Farms: A Cross-Sectional and Cross-Border Study

    Get PDF
    Background. The use of antibiotics in food production selects for resistant bacteria and may cause a threat to human and animal health. Belgium and the Netherlands have one of the highest densities of broilers and pigs in Europe, making active monitoring of antibiotic use and resistance in this region vital. Objectives. This study aimed to quantify ESBL-producing (ESBL-E. coli), carbapenem- and ciprofloxacin-resistant (CiproR) Escherichia coli in animal feces on broiler and pig farms with a history of high antibiotic use in Belgium and the Netherlands. Methods. A total of 779 broiler and 817 pig fecal samples, collected from 29 conventional broiler and 31 multiplier pig farms in the cross-border region of Belgium and the Netherlands, were screened for the presence of antibiotic-resistant E. coli using selective culturing. Results. Carbapenem-resistant E. coli were not detected. ESBL-E. coli were remarkably more prevalent in samples from Belgian than Dutch farms. However, CiproR-E. coli were highly prevalent in broilers of both countries. The percentage of samples with ESBL- and CiproR-E. coli was lower in pig compared to poultry farms and varied between farms. No clear association with the on-farm antibiotic use in the year preceding sampling was observed. Multidrug resistance was frequently observed in samples from both countries, but ESBL-production in combination with ciprofloxacin resistance was higher in samples from Belgium. Conclusions. This study demonstrated marked differences in antibiotic resistance between countries, farms and within farms. The observed variation cannot be explained straightforward by prior quantity of antibiotic use suggesting that it results from more complex interactions that warrant further investigation

    Implementation of the Infection Risk Scan (IRIS) in nine hospitals in the Belgian-Dutch border region (i-4-1-Health project)

    No full text
    BACKGROUND: A tool, the Infection Risk Scan has been developed to measure the quality of infection control and antimicrobial use. This tool measures various patient-, ward- and care-related variables in a standardized way. We describe the implementation of this tool in nine hospitals in the Dutch/Belgian border area and the obtained results. METHODS: The IRIS consists of a set of objective and reproducible measurements: patient comorbidities, (appropriate) use of indwelling medical devices, (appropriate) use of antimicrobial therapy, rectal carriage of Extended-spectrum beta-lactamase producing Enterobacterales and their clonal relatedness, environmental contamination, hand hygiene performance, personal hygiene of health care workers and presence of infection prevention preconditions. The Infection Risk Scan was implemented by an expert team. In each setting, local infection control practitioners were trained to achieve a standardized implementation of the tool and an unambiguous assessment of data. RESULTS: The IRIS was implemented in 34 wards in six Dutch and three Belgian hospitals. The tool provided ward specific results and revealed differences between wards and countries. There were significant differences in the prevalence of ESBL-E carriage between countries (Belgium: 15% versus The Netherlands: 9.6%), environmental contamination (median adenosine triphosphate (ATP) level Belgium: 431 versus median ATP level The Netherlands: 793) and calculated hand hygiene actions based on alcohol based handrub consumption (Belgium: 12.5/day versus The Netherlands: 6.3/day) were found. CONCLUSION: The Infection risk Scan was successfully implemented in multiple hospitals in a large cross-border project and provided data that made the quality of infection control and antimicrobial use more transparent. The observed differences provide potential targets for improvement of the quality of care

    Epidemiology and molecular typing of multidrug-resistant bacteria in tertiary hospitals and nursing homes in Flanders, Belgium

    No full text
    This study aimed to map MDRO carriage and potential transmission within and between three Flemish tertiary care hospitals and their neighbouring nursing homes. A cross-sectional MDRO prevalence survey was organized between October 2017 and February 2019. Perianal swabs were cultured for detection of MDRO. Determination of clonal relatedness based on wgMLST allelic profiles was performed. The prevalence of MDRO in Belgian hospitals and NHs is on the rise, compared to previous studies, and transmission in and between institutions is observed. These results re-emphasize the need for a healthcare network-wide infection prevention strategy in which WGS of MDRO strains can be&nbsp;supportive.</p

    ESBL-producing, carbapenem- and ciprofloxacin-resistant Escherichia coli in Belgian and Dutch broiler and pig farms : a cross-sectional and cross-border study

    No full text
    Background. The use of antibiotics in food production selects for resistant bacteria and may cause a threat to human and animal health. Belgium and the Netherlands have one of the highest densities of broilers and pigs in Europe, making active monitoring of antibiotic use and resistance in this region vital. Objectives. This study aimed to quantify ESBL-producing (ESBL-E. coli), carbapenem- and ciprofloxacin-resistant (CiproR) Escherichia coli in animal feces on broiler and pig farms with a history of high antibiotic use in Belgium and the Netherlands. Methods. A total of 779 broiler and 817 pig fecal samples, collected from 29 conventional broiler and 31 multiplier pig farms in the cross-border region of Belgium and the Netherlands, were screened for the presence of antibiotic-resistant E. coli using selective culturing. Results. Carbapenem-resistant E. coli were not detected. ESBL-E. coli were remarkably more prevalent in samples from Belgian than Dutch farms. However, CiproR-E. coli were highly prevalent in broilers of both countries. The percentage of samples with ESBL- and CiproR-E. coli was lower in pig compared to poultry farms and varied between farms. No clear association with the on-farm antibiotic use in the year preceding sampling was observed. Multidrug resistance was frequently observed in samples from both countries, but ESBL-production in combination with ciprofloxacin resistance was higher in samples from Belgium. Conclusions. This study demonstrated marked differences in antibiotic resistance between countries, farms and within farms. The observed variation cannot be explained straightforward by prior quantity of antibiotic use suggesting that it results from more complex interactions that warrant further investigation

    One Health surveillance of colistin-resistant Enterobacterales in Belgium and the Netherlands between 2017 and 2019.

    No full text
    BackgroundColistin serves as the last line of defense against multidrug resistant Gram-negative bacterial infections in both human and veterinary medicine. This study aimed to investigate the occurrence and spread of colistin-resistant Enterobacterales (ColR-E) using a One Health approach in Belgium and in the Netherlands.MethodsIn a transnational research project, a total of 998 hospitalized patients, 1430 long-term care facility (LTCF) residents, 947 children attending day care centres, 1597 pigs and 1691 broilers were sampled for the presence of ColR-E in 2017 and 2018, followed by a second round twelve months later for hospitalized patients and animals. Colistin treatment incidence in livestock farms was used to determine the association between colistin use and resistance. Selective cultures and colistin minimum inhibitory concentrations (MIC) were employed to identify ColR-E. A combination of short-read and long-read sequencing was utilized to investigate the molecular characteristics of 562 colistin-resistant isolates. Core genome multi-locus sequence typing (cgMLST) was applied to examine potential transmission events.ResultsThe presence of ColR-E was observed in all One Health sectors. In Dutch hospitalized patients, ColR-E proportions (11.3 and 11.8% in both measurements) were higher than in Belgian patients (4.4 and 7.9% in both measurements), while the occurrence of ColR-E in Belgian LTCF residents (10.2%) and children in day care centres (17.6%) was higher than in their Dutch counterparts (5.6% and 12.8%, respectively). Colistin use in pig farms was associated with the occurrence of colistin resistance. The percentage of pigs carrying ColR-E was 21.8 and 23.3% in Belgium and 14.6% and 8.9% in the Netherlands during both measurements. The proportion of broilers carrying ColR-E in the Netherlands (5.3 and 1.5%) was higher compared to Belgium (1.5 and 0.7%) in both measurements. mcr-harboring E. coli were detected in 17.4% (31/178) of the screened pigs from 7 Belgian pig farms. Concurrently, four human-related Enterobacter spp. isolates harbored mcr-9.1 and mcr-10 genes. The majority of colistin-resistant isolates (419/473, 88.6% E. coli; 126/166, 75.9% Klebsiella spp.; 50/75, 66.7% Enterobacter spp.) were susceptible to the critically important antibiotics (extended-spectrum cephalosporins, fluoroquinolones, carbapenems and aminoglycosides). Chromosomal colistin resistance mutations have been identified in globally prevalent high-risk clonal lineages, including E. coli ST131 (n = 17) and ST1193 (n = 4). Clonally related isolates were detected in different patients, healthy individuals and livestock animals of the same site suggesting local transmission. Clonal clustering of E. coli ST10 and K. pneumoniae ST45 was identified in different sites from both countries suggesting that these clones have the potential to spread colistin resistance through the human population or were acquired by exposure to a common (food) source. In pig farms, the continuous circulation of related isolates was observed over time. Inter-host transmission between humans and livestock animals was not detected.ConclusionsThe findings of this study contribute to a broader understanding of ColR-E prevalence and the possible pathways of transmission, offering insights valuable to both academic research and public health policy development
    corecore