9 research outputs found
A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem Morphological Traits
Current LiDAR-based methods for detecting forest change use a host of statistically selected variables which typically lack a biological link with the characteristics of the ecosystem. Consensus of the literature indicates that many authors use LiDAR to derive ecosystem morphological traits (EMTs)-namely, vegetation height, vegetation cover, and vertical structural complexity-to identify small-scale changes in forest ecosystems. Here, we provide a conceptual, biological model for predicting forest aboveground biomass (AGB) change based on EMTs. We show that through use of a multitemporal dataset it is possible to not only identify losses caused by logging in the period between data collection but also identify regions of regrowth from prior logging using EMTs. This sensitivity to the change in forest dynamics was the criterion by which LiDAR metrics were selected as proxies for each EMT. For vegetation height, results showed that the top-of-canopy height derived from a canopy height model was more sensitive to logging than the average or high percentile of raw LiDAR height distributions. For vegetation cover metrics, lower height thresholds for fractional cover calculations were more sensitive to selective logging and the regeneration of understory. For describing the structural complexity in the vertical profile, the Gini coefficient was found to be superior to foliage height diversity for detecting the dynamics occurring over the years after logging. The subsequent conceptual model for AGB estimation obtained a level of accuracy which was comparable to a model that was statistically optimised for that same area. We argue that a widespread adoption of an EMT-based conceptual approach would improve the transferability and comparability of LiDAR models for AGB worldwide
Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data
Tropical savanna ecosystems play a major role in the seasonality of the global carbon cycle. However, their ability to store and sequester carbon is uncertain due to combined and intermingling effects of anthropogenic activities and climate change, which impact wildfire regimes and vegetation dynamics. Accurate measurements of tropical savanna vegetation aboveground biomass (AGB) over broad spatial scales are crucial to achieve effective carbon emission mitigation strategies. UAV-lidar is a new remote sensing technology that can enable rapid 3-D mapping of structure and related AGB in tropical savanna ecosystems. This study aimed to assess the capability of high-density UAV-lidar to estimate and map total (tree, shrubs, and surface layers) aboveground biomass density (AGBt) in the Brazilian Savanna (Cerrado). Five ordinary least square regression models esti-mating AGBt were adjusted using 50 field sample plots (30 m × 30 m). The best model was selected under Akaike Information Criterion, adjusted coefficient of determination (adj.R2), absolute and relative root mean square error (RMSE), and used to map AGBt from UAV-lidar data collected over 1,854 ha spanning the three major vegetation formations (forest, savanna, and grassland) in Cerrado. The model using vegetation height and cover was the most effective, with an overall model adj-R2 of 0.79 and a leave-one-out cross-validated RMSE of 19.11 Mg/ha (33.40%). The uncertainty and errors of our estimations were assessed for each vegetation formation
separately, resulting in RMSEs of 27.08 Mg/ha (25.99%) for forests, 17.76 Mg/ha (43.96%) for savannas, and 7.72 Mg/ha (44.92%) for grasslands. These results prove the feasibility and potential of the UAV-lidar technology in Cerrado but also emphasize the need for further developing the estimation of biomass in grasslands, of high importance in the characterization of the global carbon balance and for supporting integrated fire management activities in tropical savanna ecosystems. Our results serve as a benchmark for future studies aiming to generate accurate biomass maps and provide baseline data for efficient management of fire and predicted climate change impacts on tropical savanna ecosystems
Predicting leaf traits of temperate broadleaf deciduous trees from hyperspectral reflectance: can a general model be applied across a growing season?
Field spectroscopy is a powerful tool for monitoring leaf functional traits in situ, but it remains unclear whether universal statistical models can be developed to predict traits from spectral information, or whether re-calibration is necessary as conditions vary. In particular, multiple leaf traits vary simultaneously across growing seasons, and it is an open question whether these temporal changes can be predicted successfully from hyperspectral data. To explore this question, monthly changes in 21 physiochemical leaf traits and plant spectra were measured for eight deciduous tree species from the UK. Partial least-squares regression (PLSR) was used to evaluate whether each trait could be predicted from a single PLSR model from reflectance spectra, or whether species- and month-level models were needed. Physiochemical traits and spectra varied greatly over the growing season, although there was less variation among mature leaves harvested between June and September. Importantly, leaf spectroscopy was able to predict seasonal variations of most leaf traits accurately, with accuracies of prediction generally higher for mature leaves. However, for several traits, the PLSR estimation models varied among species, and a single PLSR model could not be used to make accurate species-level predictions. Our findings demonstrate that leaf spectra can successfully predict multiple functional foliar traits through the growing season, establishing one of the fundamentals for monitoring and mapping plant functional diversity in temperate forests from air- and spaceborne imaging spectroscopy.Peer reviewe
Recommended from our members
Generality of statistical models for predicting multiple leaf traits of temperate broadleaf deciduous trees across a growth season from hyperspectral reflectance
Field spectroscopy is a powerful tool for monitoring leaf functional traits in situ, but it remains unclear whether universal statistical models can be developed to predict traits from spectral information, or whether re-calibration is necessary as conditions vary. In particular, multiple leaf traits vary simultaneously across growing seasons, and it is an open question whether these temporal changes can be predicted successfully from hyperspectral data. To explore this question, monthly changes in 21 physiochemical leaf traits and hyperspectral reflectanceplant spectra were measured for eight deciduous tree species from the UK. Partial least-squares regression (PLSR) was used to evaluate whether each trait could be predicted from a single PLSR model from reflectance spectra, or whether species- and month-level models were needed. Physiochemical traits and spectra varied greatly over the growing season, although there was less variation among mature leaves harvested between June and September. Importantly, leaf spectroscopy was able to predict seasonal variations of most leaf traits accurately, with accuracies of prediction generally higher for mature leaves. However, for several traits, the PLSR estimation models varied among species, and a single PLSR model could not be used to make accurate species-level predictions. Our findings demonstrate that leaf spectra can successfully predict multiple functional foliar traits through the growing season, establishing one of the fundamentals for monitoring and mapping plant functional diversity in temperate forests from air- and spaceborne imaging spectroscopy.NERC Field Spectroscopy Facilit
A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem Morphological Traits
Current LiDAR-based methods for detecting forest change use a host of statistically selected variables which typically lack a biological link with the characteristics of the ecosystem. Consensus of the literature indicates that many authors use LiDAR to derive ecosystem morphological traits (EMTs)—namely, vegetation height, vegetation cover, and vertical structural complexity—to identify small-scale changes in forest ecosystems. Here, we provide a conceptual, biological model for predicting forest aboveground biomass (AGB) change based on EMTs. We show that through use of a multitemporal dataset it is possible to not only identify losses caused by logging in the period between data collection but also identify regions of regrowth from prior logging using EMTs. This sensitivity to the change in forest dynamics was the criterion by which LiDAR metrics were selected as proxies for each EMT. For vegetation height, results showed that the top-of-canopy height derived from a canopy height model was more sensitive to logging than the average or high percentile of raw LiDAR height distributions. For vegetation cover metrics, lower height thresholds for fractional cover calculations were more sensitive to selective logging and the regeneration of understory. For describing the structural complexity in the vertical profile, the Gini coefficient was found to be superior to foliage height diversity for detecting the dynamics occurring over the years after logging. The subsequent conceptual model for AGB estimation obtained a level of accuracy which was comparable to a model that was statistically optimised for that same area. We argue that a widespread adoption of an EMT-based conceptual approach would improve the transferability and comparability of LiDAR models for AGB worldwide
A review of software solutions to process ground-based point clouds in forest applications
Purpose of ReviewIn recent years, the use of 3D point clouds in silviculture and forest ecology has seen a large increase in interest. With the development of novel 3D capture technologies, such as laser scanning, an increasing number of algorithms have been developed in parallel to process 3D point cloud data into more tangible results for forestry applications. From this variety of available algorithms, it can be challenging for users to decide which to apply to fulfil their goals best. Here, we present an extensive overview of point cloud acquisition and processing tools as well as their outputs for precision forestry. We then provide a comprehensive database of 24 algorithms for processing forest point clouds obtained using close-range techniques, specifically ground-based platforms.Recent FindingsOf the 24 solutions identified, 20 are open-source, two are free software, and the remaining two are commercial products. The compiled database of solutions, along with the corresponding technical guides on installation and general use, is accessible on a web-based platform as part of the COST Action 3DForEcoTech. The database may serve the community as a single source of information to select a specific software/algorithm that works for their requirements.SummaryWe conclude that the development of various algorithms for processing point clouds offers powerful tools that can considerably impact forest inventories in the future, although we note the necessity of creating a standardisation paradigm