5 research outputs found

    Five polymorphisms and breast cancer risk: results from the Breast Cancer Association Consortium.

    Get PDF
    Previous studies have suggested that minor alleles for ERCC4 rs744154, TNF rs361525, CASP10 rs13010627, PGR rs1042838, and BID rs8190315 may influence breast cancer risk, but the evidence is inconclusive due to their small sample size. These polymorphisms were genotyped in more than 30,000 breast cancer cases and 30,000 controls, primarily of European descent, from 30 studies in the Breast Cancer Association Consortium. We calculated odds ratios (OR) and 95% confidence intervals (95% CI) as a measure of association. We found that the minor alleles for these polymorphisms were not related to invasive breast cancer risk overall in women of European descent: ECCR4 per-allele OR (95% CI) = 0.99 (0.97-1.02), minor allele frequency = 27.5%; TNF 1.00 (0.95-1.06), 5.0%; CASP10 1.02 (0.98-1.07), 6.5%; PGR 1.02 (0.99-1.06), 15.3%; and BID 0.98 (0.86-1.12), 1.7%. However, we observed significant between-study heterogeneity for associations with risk for single-nucleotide polymorphisms (SNP) in CASP10, PGR, and BID. Estimates were imprecise for women of Asian and African descent due to small numbers and lower minor allele frequencies (with the exception of BID SNP). The ORs for each copy of the minor allele were not significantly different by estrogen or progesterone receptor status, nor were any significant interactions found between the polymorphisms and age or family history of breast cancer. In conclusion, our data provide persuasive evidence against an overall association between invasive breast cancer risk and ERCC4 rs744154, TNF rs361525, CASP10 rs13010627, PGR rs1042838, and BID rs8190315 genotypes among women of European descent

    rs495139 in the TYMS-ENOSF1 region and risk of ovarian carcinoma of mucinous histology

    Get PDF
    Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3â€Č gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97–1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03–1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 × 10−28), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small
    corecore