13 research outputs found

    Polishing of Black and White CVD Grown Polycrystalline Diamond Coatings

    Get PDF
    Microwave plasma CVD growth can produce black and white varieties of polycrystalline diamond (PCD), depending on their as-grown purity. These two types of PCDs have been polished by mechanical and chemo-mechanical polishing respectively. It has been observed that initial roughness of 2.21μm for white PCD can be brought down to 175 nm after 70 hours of combined polishing, whereas, 85 hours of combined polishing could bring down the high initial roughness of 11.2μm for black PCD down to 546 nm at the end. Although, the material that was removed during polishing was higher for the black variety of PCD but it had lower polishing rate of 4nm/hr than white PCD (13nm/hr) during chemo-mechanical polishing. Such differential polishing rate was due to harder top polished surface of the black diamond than the white diamond. The nanoindentation study on the polished PCD surfaces revealed that the black PCD has a final nanohardness of 32.58±1 GPa whereas the white variety PCD had a polished surface nanohardness of 28.5±2 GPa. More conversion of diamond surface into harder amorphous sp3 than softer graphite during polishing action may have resulted such slow rate of anisotropic polishing for black diamond than white diamond

    Deposition and Characterisation of a Diamond/Ti/Diamond Multilayer Structure

    Get PDF
    In this work, a diamond/Ti/diamond multilayer structure has been fabricated by successively following thin-film CVD and PVD routes. It has been found that a combined pre-treatment of the silicon base substrate, via argon plasma etching for creating surface roughness and, thereafter, detonation nanodiamond (DND) seeding, helps in the nucleation and growth of well-adherent CVD diamond films with a well-defined Raman signal at 1332 cm−1, showing the crystalline nature of the film. Ti sputtering on such a CVD-grown diamond surface leads to an imprinted bead-like microstructure of the titanium film, generated from the underlying diamond layer. The cross-sectional thickness of the titanium layer can be found to vary by as much as 0.5 µm across the length of the surface, which was caused by a subsequent hydrogen plasma etching process step of the composite film conducted after Ti sputtering. The hydrogen plasma etching of the Ti–diamond composite film was found to be essential for smoothening the uneven as-grown texture of the films, which was developed due to the unequal growth of the microcrystalline diamond columns. Such hydrogen plasma surface treatment helped further the nucleation and growth of a nanocrystalline diamond film as the top layer, which was deposited following a similar CVD route to that used in depositing the bottom diamond layer, albeit with different process parameters. For the latter, a hydrogen gas diluted with PH3 precursor recipe produced smaller nanocrystalline diamond crystals for the top layer. The titanium layer in between the two diamond layers possesses a very-fine-grained microstructure. Transmission electron microscopy (TEM) results show evidence of intermixing between the titanium and diamond layers at their respective interfaces. The thin films in the composite multilayer follow the contour of the plasma-etched silicon substrate and are thus useful in producing continuous protective coatings on 3D objects—a requirement for many engineering applications

    Effect of substrate roughness on growth of diamond by hot filament CVD

    Get PDF
    Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 μm to 0.91 μm (Centre Line Average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp 3 to non-sp 3 content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640°C without any additional substrate heating. The coatings grown at adverse conditions for sp 3 deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp 3 condition gives clear faceted grains

    High vacuum tribology of polycrystalline diamond coatings

    No full text
    Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700 degrees C to 900 degrees C and methane gas concentration from 3% to 1.5%. It is found that the coefficient of friction of the coatings under high vacuum of 133.32 x 10(-7) Pa (10(-7) torr) with nanocrystalline grains can be manipulated to 0.35 to enhance tribological behaviour of bare Si substrates

    High vacuum tribology of polycrystalline diamond coatings

    No full text
    Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700 degrees C to 900 degrees C and methane gas concentration from 3% to 1.5%. It is found that the coefficient of friction of the coatings under high vacuum of 133.32 x 10(-7) Pa (10(-7) torr) with nanocrystalline grains can be manipulated to 0.35 to enhance tribological behaviour of bare Si substrates

    Laser melting of titanium-diamond composites: Microstructure and mechanical behavior study

    No full text
    Titanium matrix composites (TMCs) were prepared in situ using continuous wave ytterbium doped fiber laser in order to improve the mechanical properties of titanium. In this study, 5, 10 and 15 wt% diamond powders were premixed with commercially pure titanium (CP-Ti) powder and were laser melted using laser engineered net shaping (LENS (TM)) system. The microstructure, reaction phases and mechanical behavior were investigated to understand the influences of diamond concentration. Average cross sectional hardness of the composite increased from 348 HV to 984 HV with increase in the diamond concentration from 5 to 15 wt%. Similarly, the Young's modulus of the composite, measured using nanoindentation, increased from 169 to 629 GPa. Such high mechanical properties of laser melted composites envisage their potential for wear resistant and high temperature applications. (C) 2016 Elsevier B.V. All rights reserved

    Synthesis and characterisation of freestanding diamond coatings

    No full text
    522-532Freestanding polycrystalline diamond (PCD) coatings are of immense technological importance. PCD has been grown over silicon substrates by microwave plasma assisted chemical vapor deposition (MWPACVD) process. The coatings are grown by suitable optimisation of the growth parameters of a 915 MHz microwave reactor. Thereafter, 1:1:1 solution of hydrofluoric acid (HF), nitric acid (HNO3) and acetic acid (CH3COOH) is used to etch out the silicon wafer from the backside of the coating. Hereby, freshly generated nucleation surface, could be characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and stylus profilometer and could be compared with the growth side. It is found that both the nucleation side and growth side are of very high quality (full width at half maxima, i.e., FWHM -1). The growth side is (111) textured, whereas, the nucleation side is very smooth with embedded detonation-nano-diamond (DND) agglomerates. These freestanding coatings are successfully laser cut into different geometrical shapes. They are found to be optically translucent having high refractive index. Cross-sectional microscopy of the laser cut edge reveals novel melting features of the CVD grown diamond columns

    Effect of substrate roughness on growth of diamond by hot filament CVD

    Get PDF
    Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 mu m to 0.91 mu m (centre line average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp (3) to non-sp (3) content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640A degrees C without any additional substrate heating. The coatings grown at adverse conditions for sp (3) deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp (3) condition gives clear faceted grains

    Influence of SiC addition on tribological properties of SiAlON

    No full text
    The tribological properties of gas pressure sintered SiAlON and its composite with 18 wt% silicon carbide (SiC) against two different mating materials, i.e., alumina and SiAlON are evaluated. SiAlON and SiAlON-18%SiC composite ceramics were prepared by pressure less sintering and gas pressure sintering. Fretting wear tests were carried out under dry unlubricated ambient conditions (room temperature 23-25 degrees C; relative humidity 50-55%) with a load of 8 N for 45,000 cycles. Friction and wear properties of SiAlON-SiC proved better than the monolithic SiAlON. The formation of silica roll like structure on the composite worn surface was observed
    corecore