57 research outputs found

    Cardiovascular effects of dietary salt intake in aged healthy cats: a 2-year prospective randomized, blinded, and controlled study

    Get PDF
    High salt dry expanded diets are commercially available for cats to increase water intake and urine volume, as part of the prevention or treatment of naturally occurring urinary stone formation (calcium oxalates and struvites). However, chronic high salt intake may have potential cardiovascular adverse effects in both humans, especially in aging individuals, and several animal models. The objective of this prospective, randomized, blinded, and controlled study was to assess the long-term cardiovascular effects of high salt intake in healthy aged cats. Twenty healthy neutered cats (10.1±2.4 years) were randomly allocated into 2 matched groups. One group was fed a high salt diet (3.1 g/Mcal sodium, 5.5 g/Mcal chloride) and the other group a control diet of same composition except for salt content (1.0 g/Mcal sodium, 2.2 g/Mcal chloride). Clinical examination, systolic and diastolic arterial blood pressure measurements, standard transthoracic echocardiography and conventional Doppler examinations were repeatedly performed on non-sedated cats by trained observers before and over 24 months after diet implementation. Radial and longitudinal velocities of the left ventricular free wall and the interventricular septum were also assessed in systole and diastole using 2-dimensional color tissue Doppler imaging. Statistics were performed using a general linear model. No significant effect of dietary salt intake was observed on systolic and diastolic arterial blood pressure values. Out of the 33 tested imaging variables, the only one affected by dietary salt intake was the radial early on late diastolic velocity ratio assessed in the endocardium of the left ventricular free wall, statistically lower in the high salt diet group at 12 months only (P = 0.044). In conclusion, in this study involving healthy aged cats, chronic high dietary salt intake was not associated with an increased risk of systemic arterial hypertension and myocardial dysfunction, as observed in some elderly people, salt-sensitive patients and animal models

    Spectrum of HNF1A Somatic Mutations in Hepatocellular Adenoma Differs From That in Patients With MODY3 and Suggests Genotoxic Damage

    Get PDF
    OBJECTIVE Maturity onset diabetes of the young type 3 (MODY3) is a consequence of heterozygous germline mutation in HNF1A. A subtype of hepatocellular adenoma (HCA) is also caused by biallelic somatic HNF1A mutations (H-HCA), and rare HCA may be related to MODY3. To better understand a relationship between the development of MODY3 and HCA, we compared both germline and somatic spectra of HNF1A mutations. RESEARCH DESIGN AND METHODS We compared 151 somatic HNF1A mutations in HCA with 364 germline mutations described in MODY3. We searched for genotoxic and oxidative stress features in HCA and surrounding liver tissue. RESULTS A spectrum of HNF1A somatic mutations significantly differed from the germline changes in MODY3. In HCA, we identified a specific hot spot at codon 206, nonsense and frameshift mutations mainly in the NH2-terminal part, and almost all amino acid substitutions were restricted to the POU-H domain. The high frequency of G-to-T tranversions, predominantly found on the nontranscribed DNA strand, suggested a genotoxic mechanism. However, no features of oxidative stress were observed in the nontumor liver tissue. Finally, in a few MODY3 patients with HNF1A germline mutation leading to amino acid substitutions outside the POU-H domain, we identified a different subtype of HCA either with a gp130 and/or CTNNB1 activating mutation. CONCLUSIONS Germline HNF1A mutations could be associated with different molecular subtypes of HCA. H-HCA showed mutations profoundly inactivating hepatocyte nuclear factor-1α function; they are associated with a genotoxic signature suggesting a specific toxicant exposure that could be associated with genetic predisposition

    The treatment of phantom limb pain in EMDR

    No full text

    Integrity of developing spinal motor columns is regulated by neural crest derivatives at motor exit points

    Get PDF
    AbstractSpinal motor neurons must extend their axons into the periphery through motor exit points (MEPs), but their cell bodies remain within spinal motor columns. It is not known how this partitioning is established in development. We show here that motor neuron somata are confined to the CNS by interactions with a neural crest subpopulation, boundary cap (BC) cells that prefigure the sites of spinal MEPs. Elimination of BC cells by surgical or targeted genetic ablation does not perturb motor axon outgrowth but results in motor neuron somata migrating out of the spinal cord by translocating along their axons. Heterologous neural crest grafts in crest-ablated embryos stop motor neuron emigration. Thus, before the formation of a mature transitional zone at the MEP, BC cells maintain a cell-tight boundary that allows motor axons to cross but blocks neuron migration
    • 

    corecore