10,280 research outputs found
Electric propulsion options for the SP-100 reference mission
Analyses were performed to characterize and compare electric propulsion systems for use on a space flight demonstration of the SP-100 nuclear power system. The component masses of resistojet, arcjet, and ion thruster systems were calculated using consistent assumptions and the maximum total impulse, velocity increment, and thrusting time were determined, subject to the constraint of the lift capability of a single Space Shuttle launch. From the study it was found that for most systems the propulsion system dry mass was less than 20 percent of the available mass for the propulsion system. The maximum velocity increment was found to be up to 2890 m/sec for resistojet, 3760 m/sec for arcjet, and 23 000 m/sec for ion thruster systems. The maximum thruster time was found to be 19, 47, and 853 days for resistojet, arcjet, and ion thruster systems, respectively
Origin of the tetragonal-to-orthorhombic (nematic) phase transition in FeSe: a combined thermodynamic and NMR study
The nature of the tetragonal-to-orthorhombic structural transition at
K in single crystalline FeSe is studied using shear-modulus,
heat-capacity, magnetization and NMR measurements. The transition is shown to
be accompanied by a large shear-modulus softening, which is practically
identical to that of underdoped Ba(Fe,Co)As, suggesting very similar
strength of the electron-lattice coupling. On the other hand, a
spin-fluctuation contribution to the spin-lattice relaxation rate is only
observed below . This indicates that the structural, or "nematic", phase
transition in FeSe is not driven by magnetic fluctuations
Pressure-temperature phase diagram of ferromagnetic superconductors
The symmetry approach to the description of the (P,T) phase diagram of
ferromagnet superconductors with triplet pairing is developed. Taking into
account the recent experimental observations made on UCoGe it is considered the
case of a crystal with orthorhombic structure and strong spin-orbital coupling.
It is shown that formation of ferromagnet superconducting state from a
superconducting state is inevitably accompanied by the first order type
transition.Comment: 4 pages, 1 figur
A method to find unstable periodic orbits for the diamagnetic Kepler Problem
A method to determine the admissibility of symbolic sequences and to find the
unstable periodic orbits corresponding to allowed symbolic sequences for the
diamagnetic Kepler problem is proposed by using the ordering of stable and
unstable manifolds. By investigating the unstable periodic orbits up to length
6, a one to one correspondence between the unstable periodic orbits and their
corresponding symbolic sequences is shown under the system symmetry
decomposition
Thermodynamic phase diagram and phase competition in BaFe2(As1-xPx)2 studied by thermal expansion
High-resolution thermal-expansion and specific-heat measurements were
performed on single crystalline BaFe2(As1-xPx)2 (0 < x < 0.33, x = 1). The
observation of clear anomalies allows to establish the thermodynamic phase
diagram which features a small coexistence region of SDW and superconductivity
with a steep rise of Tc on the underdoped side. Samples that undergo the
tetragonal-orthorhombic structural transition are detwinned in situ, and the
response of the sample length to the magneto-structural and superconducting
transitions is studied for all three crystallographic directions. It is shown
that a reduction of the magnetic order by superconductivity is reflected in all
lattice parameters. On the overdoped side, superconductivity affects the
lattice parameters in much the same way as the SDW on the underdoped side,
suggesting an intimate relation between the two types of order. Moreover, the
uniaxial pressure derivatives of Tc are calculated using the Ehrenfest relation
and are found to be large and anisotropic. A correspondence between
substitution and uniaxial pressure is established, i.e., uniaxial pressure
along the b-axis (c-axis) corresponds to a decrease (increase) of the P
content. By studying the electronic contribution to the thermal expansion we
find evidence for a maximum of the electronic density of states at optimal
doping
Light my elbows: a cycling jacket incorporating electronic yarn
There is a need for illuminated cycle clothing that is comfortable and safe when cycling, and stylish to wear during other activities. It is particularly challenging to integrate lighting within textiles without compromising the drape and comfort of the textile structure. A team of electronics, textiles and fashion specialists was formed to design and make an illuminated jacket for use by cyclists. The jacket incorporates bespoke woven panels that integrate electronic yarns within the pattern. These were designed and made for this project, with fluorescent and retroreflective yarns also included in the weave. LEDs integrated within the electronic yarns illuminate the elbows of the jacket, without causing constraint or adding excess volume. The movement of the jacket elbows during cycling widens the body outline and makes the lighting eye-catching.
The collaboration between electronics and textiles experts overcame challenges including development of electrical circuitry designed specifically to fit into the jacket unobtrusively, without interfering with movement or rucksack straps. Electrical connections were required between the electronic yarns assimilated within the weave. Standard, rigid solder joints would have been difficult to form without damaging the cloth and would have been liable to breakage within the garment structure, so embroidery techniques were used to create flexible, conductive connections.
The illuminated jacket provides a working prototype, demonstrating the potential for further collaborative ventures in which electronics are integrated into garments that are stylish, functional and 'wearable'. Further interdisciplinary research will include the development of additional wearable prototypes that enhance safety and wellbeing, whilst addressing the recycling of the textiles and garments, including the safe separation and disposal of electronic yarn and other components that provide electrical functionality
Calorimetric Evidence of Multiband Superconductivity in Ba(Fe0.925Co0.075)2As2
We report on the determination of the electronic heat capacity of a slightly
overdoped (x = 0.075) Ba(Fe1-xCox)2As2 single crystal with a Tc of 21.4 K. Our
analysis of the temperature dependence of the superconducting-state specific
heat provides strong evidence for a two-band s-wave order parameter with gap
amplitudes 2D1(0)/kBTc=1.9 and 2D2(0)/kBTc=4.4. Our result is consistent with
the recently predicted s+- order parameter [I. I. Mazin et al., Phys. Rev.
Lett. 101, 057003 (2008)].Comment: 4 pages, 3 figure
EPR-Bell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory
We discuss the problem of finding a Lorentz invariant extension of Bohmian
mechanics. Due to the nonlocality of the theory there is (for systems of more
than one particle) no obvious way to achieve such an extension. We present a
model invariant under a certain limit of Lorentz transformations, a limit
retaining the characteristic feature of relativity, the non-existence of
absolute time resp. simultaneity. The analysis of this model exemplifies an
important property of any Bohmian quantum theory: the quantum equilibrium
distribution cannot simultaneously be realized in all
Lorentz frames of reference.Comment: 24 pages, LaTex, 4 figure
- …