82 research outputs found

    Clinical significance of EGFR, Her-2 and EGF in oral squamous cell carcinoma: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The erbB receptors and their ligands are involved in the pathogenesis and progression of oral squamous cell carcinoma (OSCC). Although EGFR and Her-2 are frequently overexpressed in OSCC, few studies evaluated these proteins in saliva and their association with the tumor, which may represent potential usefulness in a clinical setting.</p> <p>Methods</p> <p>The levels of EGFR, Her-2, and EGF were evaluated in saliva of 46 patients with OSCC before and after the surgical removal of the lesion, as well as in matched healthy controls. The relationship of salivary levels and EGFR and Her-2 immunoexpression in tumor samples with clinicopathological features was analyzed.</p> <p>Results</p> <p>EGFR and Her-2 salivary levels did not show difference between to pre-surgery and control groups, however, both demonstrated an increase after surgical removal of the tumor. No association was detectable among receptor salivary levels, tissue expression and clinicopathological features. EGF levels in pre-surgery group were significantly lower when compared to the control group.</p> <p>Conclusions</p> <p>EGFR and Her-2 were not considered to be valuable salivary tumor markers in OSCC, however, lower levels of EGF in saliva may suggest a higher susceptibility for OSCC development.</p

    Mildly Dysplastic Oral Lesions With Optically-Detectable Abnormalities Share Genetic Similarities With Severely Dysplastic Lesions

    Get PDF
    OBJECTIVE: Optical imaging studies of oral premalignant lesions have shown that optical markers, including loss of autofluorescence and altered morphology of epithelial cell nuclei, are predictive of high-grade pathology. While these optical markers are consistently positive in lesions with moderate/severe dysplasia or cancer, they are positive only in a subset of lesions with mild dysplasia. This study compared the gene expression profiles of lesions with mild dysplasia (stratified by optical marker status) to lesions with severe dysplasia and without dysplasia. MATERIALS AND METHODS: Forty oral lesions imaged in patients undergoing oral surgery were analyzed: nine without dysplasia, nine with severe dysplasia, and 22 with mild dysplasia. Samples were submitted for high throughput gene expression analysis. RESULTS: The analysis revealed 116 genes differentially expressed among sites without dysplasia and sites with severe dysplasia; 50 were correlated with an optical marker quantifying altered nuclear morphology. Ten of 11 sites with mild dysplasia and positive optical markers (91%) had gene expression similar to sites with severe dysplasia. Nine of 11 sites with mild dysplasia and negative optical markers (82%) had similar gene expression as sites without dysplasia. CONCLUSION: This study suggests that optical imaging may help identify patients with mild dysplasia who require more intensive clinical follow-up. If validated, this would represent a significant advance in patient care for patients with oral premalignant lesions

    Distinct Immune Signature Predicts Progression of Vestibular Schwannoma and Unveils a Possible Viral Etiology

    Get PDF
    BACKGROUND: The management of sub-totally resected sporadic vestibular schwannoma (VS) may include observation, re-resection or irradiation. Identifying the optimal choice can be difficult due to the disease\u27s variable progression rate. We aimed to define an immune signature and associated transcriptomic fingerprint characteristic of rapidly-progressing VS to elucidate the underpinnings of rapidly progressing VS and identify a prognostic model for determining rate of progression. METHODS: We used multiplex immunofluorescence to characterize the immune microenvironment in 17 patients with sporadic VS treated with subtotal surgical resection alone. Transcriptomic analysis revealed differentially-expressed genes and dysregulated pathways when comparing rapidly-progressing VS to slowly or non-progressing VS. RESULTS: Rapidly progressing VS was distinctly enriched in CD4 CONCLUSION: Rapid progression of residual vestibular schwannoma following subtotal surgical resection has an underlying immune etiology that may be virally originating; and despite an abundant adaptive immune response, T-cell immunosenescence may be associated with rapid progression of VS. These findings provide a rationale for clinical trials evaluating immunotherapy in patients with rapidly progressing VS

    Mutant p53 Gains Oncogenic Functions Through a Chromosomal Instability-Induced Cytosolic DNA Response

    Get PDF
    Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression

    Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion

    Get PDF
    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.https://doi.org/10.1186/s13068-016-0639-

    High-resolution imaging of soil colloids in aqueous media with a compact soft X-ray microscope

    No full text
    Colloids play an important role when describing parameters of and processes within soils, sediments or aquifers due to their abundance and their high specific surface area. It is of great importance to visualize the morphology of the structures formed by these particles as close as possible to environmental conditions. With X-ray microscopy colloids from the environment can be imaged directly in aqueous media with high spatial resolution. We demonstrate the first use of a compact laboratory x-ray microscope for studies of colloids from the environment, namely aqueous suspensions of clays and soils. The microscope is based on a high-brightness laser-produced-plasma X-ray source, a multilayer mirror and diffractive optics. The experiments show that such compact X-ray microscopes are reaching the image quality and operational maturity to make a significant impact in fields like environmental sciences
    corecore