260 research outputs found
A Search for Photons with Energies above 2 × 1017eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
Ultra-high-energy photons with energies exceeding 1017 eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 1015 eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 1017 eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 1017 and 1018 eV
A Search for Photons with Energies Above 2 × 10 eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
Ultra-high-energy photons with energies exceeding 10 eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10 eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 10 eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 10 and 10 eV
Deep-learning based reconstruction of the shower maximum Xmax using the water-Cherenkov detectors of the Pierre Auger Observatory
The atmospheric depth of the air shower maximum Xmax is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of Xmax are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of Xmax from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of Xmax. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed Xmax using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than 25 g/cm2 at energies above 2×1019 eV
Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory
The Pierre Auger Observatory, being the largest air-shower experiment in the
world, offers an unprecedented exposure to neutral particles at the highest
energies. Since the start of data taking more than 18 years ago, various
searches for ultra-high-energy (UHE, ) photons have
been performed: either for a diffuse flux of UHE photons, for point sources of
UHE photons or for UHE photons associated with transient events like
gravitational wave events. In the present paper, we summarize these searches
and review the current results obtained using the wealth of data collected by
the Pierre Auger Observatory.Comment: Review article accepted for publication in Universe (special issue on
ultra-high energy photons
Design and implementation of the AMIGA embedded system for data acquisition
The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade
of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m
underground next to the water-Cherenkov stations that form the 23.5 km
large infilled array. The reduced distance between detectors in this denser
area allows the lowering of the energy threshold for primary cosmic ray
reconstruction down to about 10 eV. At the depth of 2.3 m the
electromagnetic component of cosmic ray showers is almost entirely absorbed so
that the buried scintillators provide an independent and direct measurement of
the air showers muon content. This work describes the design and implementation
of the AMIGA embedded system, which provides centralized control, data
acquisition and environment monitoring to its detectors. The presented system
was firstly tested in the engineering array phase ended in 2017, and lately
selected as the final design to be installed in all new detectors of the
production phase. The system was proven to be robust and reliable and has
worked in a stable manner since its first deployment.Comment: Accepted for publication at JINST. Published version, 34 pages, 15
figures, 4 table
The 2021 Open-Data release by the Pierre Auger Collaboration
The Pierre Auger Observatory is used to study the extensive air-showers produced by cosmic rays above 1017 eV. The Observatory is operated by a Collaboration of about 400 scientists, engineers, technicians and students from more than 90 institutions in 18 countries. The Collaboration is committed to the public release of their data for the purpose of re-use by a wide community including professional scientists, in educational and outreach initiatives, and by citizen scientists. The Open Access Data for 2021 comprises 10% of the samples used for results reported at the Madison ICRC 2019, amounting to over 20000 showers measured with the surface-detector array and over 3000 showers recorded simultaneously by the surface and fluorescence detectors. Data are available in pseudo-raw (JSON) format with summary CSV file containing the reconstructed parameters. A dedicated website is used to host the datasets that are available for download. Their detailed description, along with auxiliary information needed for data analysis, is given. An online event display is also available. Simplified codes derived from those used for published analyses are provided by means of Python notebooks prepared to guide the reader to an understanding of the physics results. Here we describe the Open Access data, discuss the notebooks available and show material accessible to the user at https://opendata.auger.org/
Measurement of the cosmic-ray energy spectrum above 2.5 x 10(18) eV using the Pierre Auger Observatory
We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10 eV. The principal conclusions are
(1) The flattening of the spectrum near 5×10 eV, the so-called “ankle,” is confirmed.
(2) The steepening of the spectrum at around 5×10 eV is confirmed.
(3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝E) changes from 2.51±0.03 (stat)±0.05 (syst) to 3.05±0.05 (stat)±0.10 (syst) before changing sharply to 5.1±0.3 (stat)±0.1 (syst) above 5×10 eV.
(4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8×10 eV
The observation of lightning-related events with the Surface Detector of the Pierre Auger Observatory
The Pierre Auger Observatory, designed to detect ultra-high energy cosmic rays, can be a valid instrument at the ground to study phenomena related to the atmospheric electricity. The fluorescence detector is a powerful instrument to observe ELVES thanks to its excellent time resolution, while peculiar events with a large number of triggered stations have been recorded by the surface detector. The characteristic signal of these events lasts more than 10 mu s, about two orders of magnitude more than the duration of a signal produced by a cosmic muon. Moreover, each of these events has at least one station with a signal dominated by a high-frequency noise that could be related with a lightning-induced signal. Stations with a long-lasting signal are arranged in a disk shape. There are "big" events characterized by a radius of about 6 km and few "small" events with a radius of about 2-3 km. The signal, generated by a source very close to the ground, first reaches the innermost stations and then spreads outwards. In the "big" events, a lack of signal in some of the central stations was observed. Further studies and checks are in progress to understand the origin of the lack of signal and what mechanisms occurring during the lightning evolution may provide for electric fields capable of generating and accelerating particles that can produce Cherenkov light in the stations of the surface detector
- …