18,329 research outputs found

    Neutrinoless Double Beta Decay with SNO+

    Get PDF
    SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6% abundance and allow the experiment to reach a sensitivity to the effective neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of the scintillator. Distillation and several other purification techniques will be used with the aim of achieving Borexino levels of backgrounds. The experiment is fully funded and data taking with light-water will commence in 2012 with scintillator data following in 2013.Comment: 4 pages, 2 figures, prepared for TAUP 201

    Development of shape memory metal as the actuator of a fail safe mechanism

    Get PDF
    A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps

    Hyperfast Interstellar Travel in General Relativity

    Full text link
    The problem is discussed of whether a traveller can reach a remote object and return back sooner than a photon would when taken into account that the traveller can partly control the geometry of his world. It is argued that under some reasonable assumptions in globally hyperbolic spacetimes the traveller cannot hasten reaching the destination. Nevertheless, it is perhaps possible for him to make an arbitrarily long round-trip within an arbitrarily short (from the point of view of a terrestrial observer) time.Comment: The final version, close to (but better than) what will be published in Phys. Rev. D. The explanatory part is made more detaile

    Quantum measurement and decoherence

    Get PDF
    Distribution functions defined in accord with the quantum theory of measurement are combined with results obtained from the quantum Langevin equation to discuss decoherence in quantum Brownian motion. Closed form expressions for wave packet spreading and the attenuation of coherence of a pair of wave packets are obtained. The results are exact within the context of linear passive dissipation. It is shown that, contrary to widely accepted current belief, decoherence can occur at high temperature in the absence of dissipation. Expressions for the decoherence time with and without dissipation are obtained that differ from those appearing in earlier discussions

    A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime

    Full text link
    Fewster and Mistry have given an explicit, non-optimal quantum weak energy inequality that constrains the smeared energy density of Dirac fields in Minkowski spacetime. Here, their argument is adapted to the case of flat, two-dimensional spacetime. The non-optimal bound thereby obtained has the same order of magnitude, in the limit of zero mass, as the optimal bound of Vollick. In contrast with Vollick's bound, the bound presented here holds for all (non-negative) values of the field mass.Comment: Version published in Classical and Quantum Gravity. 7 pages, 1 figur

    Quantum Inequalities and Singular Energy Densities

    Full text link
    There has been much recent work on quantum inequalities to constrain negative energy. These are uncertainty principle-type restrictions on the magnitude and duration of negative energy densities or fluxes. We consider several examples of apparent failures of the quantum inequalities, which involve passage of an observer through regions where the negative energy density becomes singular. We argue that this type of situation requires one to formulate quantum inequalities using sampling functions with compact support. We discuss such inequalities, and argue that they remain valid even in the presence of singular energy densities.Comment: 18 pages, LaTex, 2 figures, uses eps

    Quantum field theory and time machines

    Full text link
    We analyze the "F-locality condition" (proposed by Kay to be a mathematical implementation of a philosophical bias related to the equivalence principle, we call it the "GH-equivalence principle"), which is often used to build a generalization of quantum field theory to non-globally hyperbolic spacetimes. In particular we argue that the theorem proved by Kay, Radzikowski, and Wald to the effect that time machines with compactly generated Cauchy horizons are incompatible with the F-locality condition actually does not support the "chronology protection conjecture", but rather testifies that the F-locality condition must be modified or abandoned. We also show that this condition imposes a severe restriction on the geometry of the world (it is just this restriction that comes into conflict with the existence of a time machine), which does not follow from the above mentioned philosophical bias. So, one need not sacrifice the GH-equivalence principle to "emend" the F-locality condition. As an example we consider a particular modification, the "MF-locality condition". The theory obtained by replacing the F-locality condition with the MF-locality condition possesses a few attractive features. One of them is that it is consistent with both locality and the existence of time machines.Comment: Revtex, 14 pages, 1 .ps figure. To appear in Phys. Rev. D More detailed discussion is given on the MF-locality condition. Minor corrections in terminolog

    Exponential Divergence and Long Time Relaxation in Chaotic Quantum Dynamics

    Full text link
    Phase space representations of the dynamics of the quantal and classical cat map are used to explore quantum--classical correspondence in a K-system: as ℏ→0\hbar \to 0, the classical chaotic behavior is shown to emerge smoothly and exactly. The quantum dynamics near the classical limit displays both exponential separation of adjacent distributions and long time relaxation, two characteristic features of classical chaotic motion.Comment: 10 pages, ReVTeX, to appear in Phys. Rev. Lett. 13 figures NOT included. Available either as LARGE (uuencoded gzipped) postscript files or hard-copies from [email protected]
    • …
    corecore