470 research outputs found

    String Cosmology: A Review

    Get PDF
    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.Comment: 55 pages. v2: references adde

    Nuclear effects in Deep Inelastic Scattering of polarized electrons off polarized 3He and the neutron spin structure functions

    Full text link
    It is shown that the nuclear effects playing a relevant role in Deep Inelastic Scattering of polarized electrons by polarized 3^3He are mainly those arising from the effective proton and neutron polarizations generated by the SS' and DD waves in 3^3He. A simple and reliable equation relating the neutron, g1ng_1^n, and 3^3He, g13g_1^3, spin structure functions is proposed. It is shown that the measurement of the first moment of the 3^3He structure function can provide a significant check of the Bjorken Sum Rule.Comment: 11 pages (revTeX), DFUPG 75/93; 5 (postscript) figures available upon request from the author

    The FIRST Bright Quasar Survey III. The South Galactic Cap

    Full text link
    We present the results of an extension of the FIRST Bright Quasar Survey (FBQS) to the South Galactic cap, and to a fainter optical magnitude limit. Radio source counterparts with SERC R magnitudes brighter than 18.9 which meet the other FBQS criteria are included. We supplement this list with a modest number of additional objects to test our completeness for quasars with extended radio morphologies. The survey covers 589 square degrees in two equatorial strips in the southern cap. We have obtained spectra for 86% of the 522 candidates, and find 321 radio-selected quasars of which 264 are reported here for the first time. A comparison of this fainter sample with the FBQS sample shows the two to be generally similar. Fourteen new broad absorption line (BAL) quasars are included in this sample. When combined with the previously identified BAL quasars in our earlier papers, we can discern a break in the frequency of BAL quasars with radio loudness, namely that the relative number of high-ionization BAL quasars drops by a factor of four for quasars with a radio-loudness parameter R* > 100.Comment: 38 pages, 9 figures To be published in Astrophysical Journal Supplemen

    Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities

    Full text link
    We reveal a phase transition with decreasing viscosity ν\nu at \nu=\nu_c>0 in one-dimensional decaying Burgers turbulence with a power-law correlated random profile of Gaussian-distributed initial velocities \sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian one-point probability density of velocities, continuously dependent on \nu, reflecting a spontaneous one step replica symmetry breaking (RSB) in the associated statistical mechanics problem. We obtain the low orders cumulants analytically. Our results, which are checked numerically, are based on combining insights in the mechanism of the freezing transition in random logarithmic potentials with an extension of duality relations discovered recently in Random Matrix Theory. They are essentially non mean-field in nature as also demonstrated by the shock size distribution computed numerically and different from the short range correlated Kida model, itself well described by a mean field one step RSB ansatz. We also provide some insights for the finite viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6 pages, 5 figure

    On cosmologically induced hierarchies in string theory

    Full text link
    We propose, within a perturbative string theory example, a cosmological way to generate a large hierarchy between the observed Planck mass and the fundamental string scale. Time evolution results in three large space dimensions, one additional dimension transverse to our world and five small internal dimensions with a very slow time evolution. The evolution of the string coupling and internal space generate a large Planck mass. However due to an exact compensation between the time evolution of the internal space and that of the string coupling, the gauge and Yukawa couplings on our Universe are time independent.Comment: 12 pages, LaTeX, interpretation of the solution clarified, typos corrected, references adde

    Signatures of Large Extra Dimensions

    Get PDF
    String theory suggests modifications of our spacetime such as extra dimensions and the existence of a mininal length scale. In models with addidional dimensions, the Planck scale can be lowered to values accessible by future colliders. Effective theories which extend beyond the standart-model by including extra dimensions and a minimal length allow computation of observables and can be used to make testable predictions. Expected effects that arise within these models are the production of gravitons and black holes. Furthermore, the Planck-length is a lower bound to the possible resolution of spacetime which might be reached soon.Comment: 8 pages, no figures, Talk presented at the NATO Advanced Study Institute: Structure and Dynamics of Elementary Matter, Kemer, Turkey, 22 Sep - 2 Oct 2003. Proceedings to be published by Kluwer Academic publisher

    Finite elements and the discrete variable representation in nonequilibrium Green's function calculations. Atomic and molecular models

    Get PDF
    In this contribution, we discuss the finite-element discrete variable representation (FE-DVR) of the nonequilibrium Green's function and its implications on the description of strongly inhomogeneous quantum systems. In detail, we show that the complementary features of FEs and the DVR allows for a notably more efficient solution of the two-time Schwinger/Keldysh/Kadanoff-Baym equations compared to a general basis approach. Particularly, the use of the FE-DVR leads to an essential speedup in computing the self-energies. As atomic and molecular examples we consider the He atom and the linear version of H3+_3^+ in one spatial dimension. For these closed-shell models we, in Hartree-Fock and second Born approximation, compute the ground-state properties and compare with the exact findings obtained from the solution of the few-particle time-dependent Schr\"odinger equation.Comment: 12 pages, 3 figures, submitted as proceedings of conference "PNGF IV

    Multicultural Perspectives in Language Teaching

    Get PDF
    text紀要論文 / Departmental Bulletin Paperdepartmental bulletin pape

    Saturated ideal modes in advanced tokamak regimes in MAST

    Get PDF
    MAST plasmas with a safety factor above unity and a profile with either weakly reversed shear or broad low-shear regions, regularly exhibit long-lived saturated ideal magnetohydrodynamic (MHD) instabilities. The toroidal rotation is flattened in the presence of such perturbations and the fast ion losses are enhanced. These ideal modes, distinguished as such by the notable lack of islands or signs of reconnection, are driven unstable as the safety factor approaches unity. This could be of significance for advanced scenarios, or hybrid scenarios which aim to keep the safety factor just above rational surfaces associated with deleterious resistive MHD instabilities, especially in spherical tokamaks which are more susceptible to such ideal internal modes. The role of rotation, fast ions and ion diamagnetic effects in determining the marginal mode stability is discussed, as well as the role of instabilities with higher toroidal mode numbers as the safety factor evolves to lower values
    corecore