64 research outputs found

    Process mapping strategies to prevent subcutaneous implantable cardioverter-defibrillator infections

    Get PDF
    Background: Infection remains a major complication of cardiac implantable electronic devices and can lead to significant morbidity and mortality. Implantable devices that avoid transvenous leads, such as the subcutaneous implantable cardioverter-defibrillator (S-ICD), can reduce the risk of serious infection-related complications, such as bloodstream infection and infective endocarditis. While the 2017 AHA/ACC/HRS guidelines include recommendations for S-ICD use for patients at high risk of infection, currently, there are no clinical trial data that address best practices for the prevention of S-ICD infections. Therefore, an expert panel was convened to develop a consensus on these topics. Methods: An expert process mapping methodology was used to achieve consensus on the appropriate steps to minimize or prevent S-ICD infections. Two face-to-face meetings of high-volume S-ICD implanters and an infectious diseases specialist, with expertise in cardiovascular implantable electronic device infections, were conducted to develop consensus on useful strategies pre-, peri-, and postimplant to reduce S-ICD infection risk. Results: Expert panel consensus on recommended steps for patient preparation, S-ICD implantation, and postoperative management was developed to provide guidance in individual patient management. Conclusion: Achieving expert panel consensus by process mapping methodology for S-ICD infection prevention was attainable, and the results should be helpful to clinicians in adopting interventions to minimize risks of S-ICD infection

    Subcutaneous or Transvenous Defibrillator Therapy.

    Get PDF
    BACKGROUND: The subcutaneous implantable cardioverter-defibrillator (ICD) was designed to avoid complications related to the transvenous ICD lead by using an entirely extrathoracic placement. Evidence comparing these systems has been based primarily on observational studies. METHODS: We conducted a noninferiority trial in which patients with an indication for an ICD but no indication for pacing were assigned to receive a subcutaneous ICD or transvenous ICD. The primary end point was the composite of device-related complications and inappropriate shocks; the noninferiority margin for the upper boundary of the 95% confidence interval for the hazard ratio (subcutaneous ICD vs. transvenous ICD) was 1.45. A superiority analysis was prespecified if noninferiority was established. Secondary end points included death and appropriate shocks. RESULTS: A total of 849 patients (426 in the subcutaneous ICD group and 423 in the transvenous ICD group) were included in the analyses. At a median follow-up of 49.1 months, a primary end-point event occurred in 68 patients in the subcutaneous ICD group and in 68 patients in the transvenous ICD group (48-month Kaplan-Meier estimated cumulative incidence, 15.1% and 15.7%, respectively; hazard ratio, 0.99; 95% confidence interval [CI], 0.71 to 1.39; P = 0.01 for noninferiority; P = 0.95 for superiority). Device-related complications occurred in 31 patients in the subcutaneous ICD group and in 44 in the transvenous ICD group (hazard ratio, 0.69; 95% CI, 0.44 to 1.09); inappropriate shocks occurred in 41 and 29 patients, respectively (hazard ratio, 1.43; 95% CI, 0.89 to 2.30). Death occurred in 83 patients in the subcutaneous ICD group and in 68 in the transvenous ICD group (hazard ratio, 1.23; 95% CI, 0.89 to 1.70); appropriate shocks occurred in 83 and 57 patients, respectively (hazard ratio, 1.52; 95% CI, 1.08 to 2.12). CONCLUSIONS: In patients with an indication for an ICD but no indication for pacing, the subcutaneous ICD was noninferior to the transvenous ICD with respect to device-related complications and inappropriate shocks. (Funded by Boston Scientific; PRAETORIAN ClinicalTrials.gov number, NCT01296022.)
    corecore