2,619 research outputs found

    Identity Crisis

    Get PDF

    communication i

    Get PDF

    Quench Induced Vortices in the Symmetry Broken Phase of Liquid 4^4He

    Full text link
    Motivated by the study of cosmological phase transitions, our understanding of the formation of topological defects during spontaneous symmetry-breaking and the associated non-equilibrium field theory has recently changed. Experiments have been performed in superfluid 4^4He to test the new ideas involved. In particular, it has been observed that a vortex density is seen immediately after pressure quenches from just below the λ\lambda transition. We discuss possible interpretations of these vortices, conclude they are consistent with our ideas of vortex formation and propose a modification of the original experiments.Comment: 29 pages, RevTeX with one EPS figur

    Quantum Turbulence in a Trapped Bose-Einstein Condensate

    Full text link
    We study quantum turbulence in trapped Bose-Einstein condensates by numerically solving the Gross-Pitaevskii equation. Combining rotations around two axes, we successfully induce quantum turbulent state in which quantized vortices are not crystallized but tangled. The obtained spectrum of the incompressible kinetic energy is consistent with the Kolmogorov law, the most important statistical law in turbulence.Comment: 4 pages, 4 figures, Physical Review A 76, 045603 (2007

    Evolution of a Network of Vortex Loops in HeII. Exact Solution of the "Rate Equation"

    Full text link
    Evolution of a network of vortex loops in HeII due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l)n(l) of number of loops of length ll proposed by Copeland with coauthors. By using the special ansatz in the ''collision'' integral we have found the exact power-like solution of ''kinetic equation'' in stationary case. That solution is the famous equilibrium distribution n(l)l5/2n(l)\varpropto l^{-5/2} obtained earlier in numerical calculations. Our result, however, is not equilibrium, but on the contrary, it describes the state with two mutual fluxes of the length (or energy) in space of the vortex loop sizes. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of order of interline space. We also obtain that the decay of the vortex tangle obeys the Vinen equation, obtained earlier phenomenologically. We evaluate also the full rate of reconnection events. PACS-number 67.40Comment: 4 pages, submitted to PR

    The Heat Kernel Expansion on a Cone and Quantum Fields Near Cosmic Strings

    Full text link
    An asymptotic expansion of the trace of the heat kernel on a cone where the heat coefficients have a delta function behavior at the apex is obtained. It is used to derive the renormalized effective action and total energy of a self-interacting quantum scalar field on the cosmic string space-time. Analogy is pointed out with quantum theory with boundaries. The surface infinities in the effective action are shown to appear and are removed by renormalization of the string tension. Besides, the total renormalized energy turns out to be finite due to cancelation of the known non-integrable divergence in the energy density of the field with a counterterm in the bare string tension.Comment: 20 pages, JINR preprint August, 1993, E2-93-291, LATEX fil

    Vortex Formation by Interference of Multiple Trapped Bose-Einstein Condensates

    Get PDF
    We report observations of vortex formation as a result of merging together multiple 87^{87}Rb Bose-Einstein condensates (BECs) in a confining potential. In this experiment, a trapping potential is partitioned into three sections by a barrier, enabling the simultaneous formation of three independent, uncorrelated condensates. The three condensates then merge together into one BEC, either by removal of the barrier, or during the final stages of evaporative cooling if the barrier energy is low enough; both processes can naturally produce vortices within the trapped BEC. We interpret the vortex formation mechanism as originating in interference between the initially independent condensates, with indeterminate relative phases between the three initial condensates and the condensate merging rate playing critical roles in the probability of observing vortices in the final, single BEC.Comment: 5 pages, 3 figure

    The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    Get PDF
    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data

    Thermal dissipation in quantum turbulence

    Full text link
    The microscopic mechanism of thermal dissipation in quantum turbulence has been numerically studied by solving the coupled system involving the Gross-Pitaevskii equation and the Bogoliubov-de Gennes equation. At low temperatures, the obtained dissipation does not work at scales greater than the vortex core size. However, as the temperature increases, dissipation works at large scales and it affects the vortex dynamics. We successfully obtained the mutual friction coefficients of the vortex dynamics as functions of temperature, which can be applied to the vortex dynamics in dilute Bose-Einstein condensates.Comment: 4 pages, 6 figures, submitted to AP

    Kolmogorov Spectrum of Quantum Turbulence

    Full text link
    There is a growing interest in the relation between classical turbulence and quantum turbulence. Classical turbulence arises from complicated dynamics of eddies in a classical fluid. In contrast, quantum turbulence consists of a tangle of stable topological defects called quantized vortices, and thus quantum turbulence provides a simpler prototype of turbulence than classical turbulence. In this paper, we investigate the dynamics and statistics of quantized vortices in quantum turbulence by numerically solving a modified Gross-Pitaevskii equation. First, to make decaying turbulence, we introduce a dissipation term that works only at scales below the healing length. Second, to obtain steady turbulence through the balance between injection and decay, we add energy injection at large scales. The energy spectrum is quantitatively consistent with the Kolmogorov law in both decaying and steady turbulence. Consequently, this is the first study that confirms the inertial range of quantum turbulence.Comment: 14pages, 24 figures and 1 table. Appeared in Journal of the Physical Society of Japan, Vol.74, No.12, p.3248-325
    corecore