289 research outputs found

    Detection of a misaligned broken pipe by electromagnetic interaction

    Get PDF
    The study we are presenting concerns electromagnetic scattering of a plane wave due to the presence of a misaligned broken pipe buried in a half-space occupied by cement and by asphalt/ground, for civil-engineering applications

    Augmented reality in open surgery

    Get PDF
    Augmented reality (AR) has been successfully providing surgeons an extensive visual information of surgical anatomy to assist them throughout the procedure. AR allows surgeons to view surgical field through the superimposed 3D virtual model of anatomical details. However, open surgery presents new challenges. This study provides a comprehensive overview of the available literature regarding the use of AR in open surgery, both in clinical and simulated settings. In this way, we aim to analyze the current trends and solutions to help developers and end/users discuss and understand benefits and shortcomings of these systems in open surgery. We performed a PubMed search of the available literature updated to January 2018 using the terms (1) “augmented reality” AND “open surgery”, (2) “augmented reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”, (3) “mixed reality” AND “open surgery”, (4) “mixed reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”. The aspects evaluated were the following: real data source, virtual data source, visualization processing modality, tracking modality, registration technique, and AR display type. The initial search yielded 502 studies. After removing the duplicates and by reading abstracts, a total of 13 relevant studies were chosen. In 1 out of 13 studies, in vitro experiments were performed, while the rest of the studies were carried out in a clinical setting including pancreatic, hepatobiliary, and urogenital surgeries. AR system in open surgery appears as a versatile and reliable tool in the operating room. However, some technological limitations need to be addressed before implementing it into the routine practice

    Caciocavallo Podolico Cheese, a Traditional Agri-Food Product of the Region of Basilicata, Italy: Comparison of the Cheese’s Nutritional, Health and Organoleptic Properties at 6 and 12 Months of Ripening, and Its Digital Communication

    Get PDF
    Traditional agri-food products (TAPs) are closely linked to the peculiarities of the territory of origin and are strategic tools for preserving culture and traditions; nutritional and organoleptic peculiarities also differentiate these products on the market. One such product is Caciocavallo Podolico Lucano (CPL), a stretched curd cheese made exclusively from raw milk from Podolian cows, reared under extensive conditions. The objective of this study was to characterise CPL and evaluate the effects of ripening (6 vs. 12 months) on the quality and organoleptic properties, using the technological “artificial senses” platform, of CPL produced and sold in the region of Basilicata, Italy. Additionally, this study represents the first analysis of cheese-related digital communication and trends online. The study found no significant differences between 6-month- and 12-month-ripened cheese, except for a slight increase in cholesterol levels in the latter. CPL aged for 6 and 12 months is naturally lactose-free, rich in bioactive components, and high in vitamin A and antioxidants and has a low PUFA-n6/n3 ratio. The “artificial sensory profile” was able to discriminate the organoleptic fingerprints of 6-month- and 12-month-ripened cheese. The application of a sociosemiotic methodology enabled us to identify the best drivers to create effective communication for this product. The researchers recommend focusing on creating a certification mark linked to the territory for future protection

    Transcranial magnetic stimulation effects support an oscillatory model of ERP genesis

    Get PDF
    Whether prestimulus oscillatory brain activity contributes to the generation of post-stimulus-evoked neural responses has long been debated, but findings remain inconclusive. We first investigated the hypothesized relationship via EEG recordings during a perceptual task with this correlational evidence causally probed subsequently by means of online rhythmic transcranial magnetic stimulation. Both approaches revealed a close link between prestimulus individual alpha frequency (IAF) and P1 latency, with faster IAF being related to shorter latencies, best explained via phase-reset mechanisms. Moreover, prestimulus alpha amplitude predicted P3 size, best explained via additive (correlational and causal evidence) and baseline shift mechanisms (correlational evidence), each with distinct prestimulus alpha contributors. Finally, in terms of performance, faster prestimulus IAF and shorter P1 latencies were both associated with higher task accuracy, while lower prestimulus alpha amplitudes and higher P3 amplitudes were associated with higher confidence ratings. Our results are in favor of the oscillatory model of ERP genesis and modulation, shedding new light on the mechanistic relationship between prestimulus oscillations and functionally relevant evoked components

    Hierarchical psychophysiological pathways subtend perceptual asymmetries in Neglect

    Get PDF
    Stroke patients with left Hemispatial Neglect (LHN) show deficits in perceiving left contralesional stimuli with biased visuospatial perception towards the right hemifield. However, very little is known about the functional organization of the visuospatial perceptual neural network and how this can account for the profound reorganization of space representation in LHN. In the present work, we aimed at (1) identifying EEG measures that discriminate LHN patients against controls and (2) devise a causative neurophysiological model between the discriminative EEG measures. To these aims, EEG was recorded during exposure to lateralized visual stimuli which allowed for pre-and post-stimulus activity investigation across three groups: LHN patients, lesioned controls, and healthy individuals. Moreover, all participants performed a standard behavioral test assessing the perceptual asymmetry index in detecting lateralized stimuli. The between-groups discriminative EEG patterns were entered into a Structural Equation Model for the identification of causative hierarchical associations (i.e., pathways) between EEG measures and the perceptual asymmetry index. The model identified two pathways. A first pathway showed that the combined contribution of pre-stimulus frontoparietal connectivity and individual-alpha-frequency predicts post-stimulus processing, as measured by visual-evoked N100, which, in turn, predicts the perceptual asymmetry index. A second pathway directly links the inter-hemispheric distribution of alpha-amplitude with the perceptual asymmetry index. The two pathways can collectively explain 83.1% of the variance in the perceptual asymmetry index. Using causative modeling, the present study identified how psychophysiological correlates of visuospatial perception are organized and predict the degree of behavioral asymmetry in LHN patients and controls

    Cardio-facio-cutaneous syndrome and gastrointestinal defects: report on a newborn with 19p13.3 deletion including the MAP 2K2 gene

    Get PDF
    Background: Cardio-facio-cutaneous syndrome (CFCS) belongs to RASopathies, a group of conditions caused by mutations in genes encoding proteins of the rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathway. It is a rare syndrome, with about 300 patients reported. Main clinical manifestations include facial dysmorphisms, growth failure, heart defects, developmental delay, and ectodermal abnormalities. Mutations (mainly missense) of four genes (BRAF, MAP 2 K1, MAP 2 K2, and KRAS) have been associated to CFCS. However, whole gene deletions/duplications and chromosomal microdeletions have been also reported. Specifcally, 19p13.3 deletion including MAP 2 K2 gene are responsible for cardio-facio-cutaneous microdeletion syndrome, whose afected subjects show more severe phenotype than CFCS general population. Case presentation: Hereby, we report on a female newborn with prenatal diagnosis of omphalocele, leading to further genetic investigations through amniocentesis. Among these, array comparative genomic hybridization (a-CGH) identifed a 19p13.3 microdeletion, spanning 1.27Mb and including MAP 2 K2 gene. Clinical features at birth (coarse face with dysmorphic features, sparse and friable hair, cutaneous vascular malformations and hyperkeratotic lesions, interventricular septal defect, and omphalocele) were compatible with CFCS diagnosis, and further postnatal genetic investigations were not considered necessary. Soon after discharge, at around 1month of life, she was readmitted to our Neonatal Intensive Care Unit due to repeated episodes of vomiting, subtending a hypertrophic pyloric stenosis (HPS) which was promptly identifed and treated. Conclusions: Our report supports the 19p13.3 microdeletion as a contiguous gene syndrome, in which the involvement of the genes contiguous to MAP 2 K2 may modify the patients’ phenotype. It highlights how CFCS afected subjects, including those with 19p13.3 deletions, may have associated gastrointestinal defects (e.g., omphalocele and HPS), providing further data on 19p13.3 microdeletion syndrome, and a better characterization of its genomic and phenotypic features. The complex clinical picture of such patients may be worsened by additional, and even precocious, life-threatening conditions like HPS. Clinicians must consider, anticipate and/or promptly treat possible medical and surgical complications, with the aim of reducing adverse outcomes. Extensive diagnostic work-up, and early, continuous, and multidisciplinary follow-up, as well as integrated care, are necessary for the longitudinal clinical evolution of any single patient

    Whole-exome analysis in osteosarcoma to identify a personalized therapy

    Get PDF
    Osteosarcoma is the most common pediatric primary non-hematopoietic bone tumor. Survival of these young patients is related to the response to chemotherapy and development of metastases. Despite many advances in cancer research, chemotherapy regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential to investigate new specific molecular therapies for osteosarcoma to increase the survival rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies of patients with conventional high grade osteosarcoma to advance our understanding of their genetic underpinnings and to correlate the genetic alteration with the clinical and pathological features of each patient to identify a personalized therapy. We identified 18,275 somatic variations in 8,247 genes and we found three mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the highest number of variations; it is an important component of a histone H3 lysine 4 methyltransferase complex and it is one of the histone modifiers previously implicated in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15 genes that showed variations only in patients that did not respond to therapy and developed metastasis and some of these genes are involved in carcinogenesis and tumor progression in other tumors. These data could offer the opportunity to get a key molecular target to identify possible new strategies for early diagnosis and new therapeutic approaches for osteosarcoma and to provide a tailored treatment for each patient based on their genetic profile

    Impact of acute changes of left ventricular contractility on the transvalvular impedance: validation study by pressure-volume loop analysis in healthy pigs

    Get PDF
    BACKGROUND: The real-time and continuous assessment of left ventricular (LV) myocardial contractility through an implanted device is a clinically relevant goal. Transvalvular impedance (TVI) is an impedentiometric signal detected in the right cardiac chambers that changes during stroke volume fluctuations in patients. However, the relationship between TVI signals and LV contractility has not been proven. We investigated whether TVI signals predict changes of LV inotropic state during clinically relevant loading and inotropic conditions in swine normal heart. METHODS: The assessment of RVTVI signals was performed in anesthetized adult healthy anesthetized pigs (n = 6) instrumented for measurement of aortic and LV pressure, dP/dtmax and LV volumes. Myocardial contractility was assessed with the slope (Ees) of the LV end systolic pressure-volume relationship. Effective arterial elastance (Ea) and stroke work (SW) were determined from the LV pressure-volume loops. Pigs were studied at rest (baseline), after transient mechanical preload reduction and afterload increase, after 10-min of low dose dobutamine infusion (LDDS, 10 ug/kg/min, i.v), and esmolol administration (ESMO, bolus of 500 µg and continuous infusion of 100 µg·kg-1·min-1). RESULTS: We detected a significant relationship between ESTVI and dP/dtmax during LDDS and ESMO administration. In addition, the fluctuations of ESTVI were significantly related to changes of the Ees during afterload increase, LDDS and ESMO infusion. CONCLUSIONS: ESTVI signal detected in right cardiac chamber is significantly affected by acute changes in cardiac mechanical activity and is able to predict acute changes of LV inotropic state in normal heart

    What is the role of locoregional anesthesia in breast surgery? A systematic literature review focused on pain intensity, opioid consumption, adverse events, and patient satisfaction

    Get PDF
    Breast surgery in the United States is common. Pain affects up to 50% of women undergoing breast surgery and can interfere with postoperative outcomes. General anesthesia is the conventional, most frequently used anaesthetic technique. Various locoregional anesthetic techniques are also used for breast surgeries. A systematic review of the use of locoregional anesthesia for postoperative pain in breast surgery is needed to clarify its role in pain management

    Subclinical Atrial Fibrillation on Prolonged ECG Holter Monitoring: Results from the Multicenter Real-World SAFARI (Silent Atrial Fibrillation ANCE-Sicily Research Initiative) Study

    Get PDF
    Background: The detection of subclinical/silent atrial fibrillation (SAF) in the general population is of the utmost importance, given its potential adverse consequences. Incident AF has been observed in 30% to 70% of patients with implanted devices, but its prevalence may indeed be lower in the general population. The prospective, multicentric, observational Silent Atrial Fibrillation ANCE Research Initiative (SAFARI) study aimed at assessing the SAF prevalence in a real-world outpatient setting by the means of a small, wearable, prolonged ECG Holter monitoring (>5 days) device (CGM HI 3-Lead ECG; CGM TELEMEDICINE, Piacenza, Italy). Methods: Patients = 55 years of age at risk for AF were screened according to the inclusion criteria to undergo prolonged 3-lead ECG Holter monitoring. SAF episodes were classified as follows: Class A, <30 s; Class B, 30 to 299 s; and Class C, =300 s. Results: In total, 119 patients were enrolled (64 men; median age 71 (IQR 55-85) years). At a median of 13.5 (IQR 5-21) days of monitoring, SAF episodes were found in 19 patients (16%). A total of 10,552 arrhythmic episodes were registered, 6901 in Class A (n = 7 patients), 2927 in Class B (n = 3), and 724 in Class C (n = 9), (Class A vs. B and C, p < 0.001). This latter group had multiple (all-class) episodes, and two patients had >1000 episodes. There were no clinical, echocardiographic, or laboratory findings able to discriminate patients with SAF from those in sinus rhythm in univariate and multivariable analyses; of note is that the Class C patients showed a higher diastolic blood pressure, resting heart rate, and indexed LA volume. Conclusions. Over a median of 13 days of Holter monitoring, the SAFARI study confirmed the usefulness of small wearable devices in detecting SAF episodes in real-world outpatients at risk for, but with no prior history of, AF
    • …
    corecore