93 research outputs found

    Azimuthal ion movement in HiPIMS plasmas -- Part I: velocity distribution function

    Full text link
    Magnetron sputtering discharges feature complex magnetic field configurations to confine the electrons close to the cathode surface. This magnetic field configuration gives rise to a strong electron drift in azimuthal direction, with typical drift velocities on the order of \SI{100}{\kilo\meter\per\second}. In high power impulse magnetron sputtering (HiPIMS) plasmas, the ions have also been observed to follow the movement of electrons with velocities of a few \si{\kilo\meter\per\second}, despite being unmagnetized. In this work, we report on measurements of the azimuthal ion velocity using spatially resolved optical emission spectroscopy, allowing for a more direct measurement compared to experiments performed using mass spectrometry. The azimuthal ion velocities increase with target distance, peaking at about \SI{1.55}{\kilo\meter\per\second} for argon ions and \SI{1.25}{\kilo\meter\per\second} for titanium ions. Titanium neutrals are also found to follow the azimuthal ion movement which is explained with resonant charge exchange collisions. The experiments are then compared to a simple test-particle simulation of the titanium ion movement, yielding good agreement to the experiments when only considering the momentum transfer from electrons to ions via Coulomb collisions as the only source of acceleration in azimuthal direction. Based on these results, we propose this momentum transfer as the primary source for ion acceleration in azimuthal direction

    High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization

    Get PDF
    We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in × direction at velocities of ∼10 km s−1 and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasma conductivity speeds it up

    Concepts and characteristics of the 'COST Reference Microplasma Jet'

    Get PDF
    Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available

    Helium metastable species generation in atmospheric pressure RF plasma jets driven by tailored voltage waveforms in mixtures of He and N2

    Get PDF
    Spatially resolved tunable diode-laser absorption measurements of the absolute densities of He-I (23S1) metastables in a micro atmospheric pressure plasma jet operated in He/N2 and driven by 'peaks'- and 'valleys'-type tailored voltage waveforms are presented. The measurements are performed at different nitrogen admixture concentrations and peak-to-peak voltages with waveforms that consist of up to four consecutive harmonics of the fundamental frequency of 13.56 MHz. Comparisons of the measured metastable densities with those obtained from particle-in-cell/Monte Carlo collision simulations show a good quantitative agreement. The density of helium metastables is found to be significantly enhanced by increasing the number of consecutive driving harmonics. Their generation can be further optimized by tuning the peak-to-peak voltage amplitude and the concentration of the reactive gas admixture. These findings are understood based on detailed fundamental insights into the spatio-temporal electron dynamics gained from the simulations, which show that voltage waveform tailoring allows to control the electron energy distribution function to optimize the metastable generation. A high degree of correlation between the metastable creation rate and the electron impact excitation rate from the helium ground state into the He-I ((3s)3S1) level is observed for some conditions which may facilitate an estimation of the metastable densities based on phase resolved optical emission spectroscopy measurements of the 706.5 nm He-I line originating from the above level and metastable density values at proper reference conditions

    Spatially resolved simulation of a radio frequency driven micro atmospheric pressure plasma jet and its effluent

    Full text link
    Radio frequency driven plasma jets are frequently employed as efficient plasma sources for surface modification and other processes at atmospheric pressure. The radio-frequency driven micro atmospheric pressure plasma jet (μ\muAPPJ) is a particular variant of that concept whose geometry allows direct optical access. In this work, the characteristics of the μ\muAPPJ operated with a helium-oxygen mixture and its interaction with a helium environment are studied by numerical simulation. The density and temperature of the electrons, as well as the concentration of all reactive species are studied both in the jet itself and in its effluent. It is found that the effluent is essentially free of charge carriers but contains a substantial amount of activated oxygen (O, O3_3 and O2(1Δ)_2(^1\Delta)). The simulation results are verified by comparison with experimental data

    Spectroscopic characterization of atmospheric pressure um-jet plasma source

    Full text link
    A radio frequency um-jet plasma source is studied using He/O2 mixture. This um-jet can be used for different applications as a source of chemical active species e.g. oxygen atoms, molecular metastables and ozone. Using absolutely-calibrated optical emission spectroscopy and numerical simulation, the gas temperature in active plasma region and plasma parameters (electron density and electron distribution function) are determined. Concentrations of oxygen atoms and ozone in the plasma channel and in the effluent of the plasma source are measured using emission and absorption spectroscopy. To interpret the measured spatial distributions, the steady-state species' concentrations are calculated using determined plasma parameters and gas temperature. At that the influence of the surface processes and gas flow regime on the loss of the active species in the plasma source are discussed. The measured spatial distributions of oxygen atom and ozone densities are compared with the simulated ones.Comment: 29 pages, 10 figure
    • …
    corecore