29 research outputs found

    DC-STAMP knock-down deregulates cytokine production and T-cell stimulatory capacity of LPS-matured dendritic cells

    Get PDF
    Contains fulltext : 96778.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Dendritic cells (DCs) are the highly specialized antigen presenting cells of the immune system that play a key role in regulating immune responses. DCs can efficiently initiate immune responses or induce tolerance. Due to this dual function, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. Characterization of DC-specific genes, leading to better understanding of DC immunobiology, will help to guide their use in clinical settings. We previously identified DC-STAMP, a multi-membrane spanning protein preferentially expressed by DCs. DC-STAMP resides in the endoplasmic reticulum (ER) of immature DCs and translocates towards the Golgi compartment upon maturation. In this study we knocked down DC-STAMP in mouse bone marrow-derived DCs (mBMDCs) to determine its function. RESULTS: We demonstrate that DC-STAMP knock-down mBMDCs secrete less IL-6, IL-12, TNF-alpha and IL-10 while IL-1 production is enhanced. Moreover, LPS-matured DC-STAMP knock-down mBMDCs show impaired T cell activation potential and induction of Th1 responses in an alloreaction. CONCLUSIONS: We show that DC-STAMP plays an important role in cytokine production by mBMDCs following LPS exposure. Our results reveal a novel function of DC-STAMP in regulating DC-initiated immune responses

    Route of Administration of the TLR9 Agonist CpG Critically Determines the Efficacy of Cancer Immunotherapy in Mice

    Get PDF
    Contains fulltext : 81648.pdf (publisher's version ) (Open Access)BACKGROUND: The TLR9 agonist CpG is increasingly applied in preclinical and clinical studies as a therapeutic modality to enhance tumor immunity. The clinical application of CpG appears, however, less successful than would be predicted from animal studies. One reason might be the different administration routes applied in most mouse studies and clinical trials. We studied whether the efficacy of CpG as an adjuvant in cancer immunotherapy is dependent on the route of CpG administration, in particular when the tumor is destructed in situ. METHODOLOGY/PRINCIPAL FINDINGS: In situ tumor destruction techniques are minimally invasive therapeutic alternatives for the treatment of (nonresectable) solid tumors. In contrast to surgical resection, tumor destruction leads to the induction of weak but tumor-specific immunity that can be enhanced by coapplication of CpG. As in situ tumor destruction by cryosurgery creates an instant local release of antigens, we applied this model to study the efficacy of CpG to enhance antitumor immunity when administrated via different routes: peritumoral, intravenous, and subcutaneous but distant from the tumor. We show that peritumoral administration is superior in the activation of dendritic cells, induction of tumor-specific CTL, and long-lasting tumor protection. Although the intravenous and subcutaneous (at distant site) exposures are commonly used in clinical trials, they only provided partial protection or even failed to enhance antitumor responses as induced by cryosurgery alone. CONCLUSIONS/SIGNIFICANCE: CpG administration greatly enhances the efficacy of in situ tumor destruction techniques, provided that CpG is administered in close proximity of the released antigens. Hence, this study helps to provide directions to fully benefit from CpG as immune stimulant in a clinical setting

    Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation

    Get PDF
    Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is induced is not clear. Here we show that SBAs uniquely induce intracellular lipid bodies (LBs) in the CD11b+ DC subset in vitro and in vivo. Using genetic and pharmacological interference in models for vaccination and in situ tumour ablation, we demonstrate that LB induction is causally related to the saponin- dependent increase in cross-presentation and T-cell activation. These findings link adjuvant activity to LB formation, aid the application of SBAs as a cancer vaccine component, and will stimulate development of new adjuvants enhancing T-cell-mediated immunity

    Impact of MR-guided boiling histotripsy in distinct murine tumor models

    No full text
    Interest in mechanical high intensity focused ultrasound (HIFU) ablation is rapidly growing. Boiling histotripsy (BH) is applied for mechanical fragmentation of soft tissue into submicron fragments with limited temperature increase using the shock wave and cavitation effects of HIFU. Research on BH has been largely limited to ex vivo experiments. As a consequence, the in vivo pathology after BH treatment and the relation to preexistent tissue characteristics are not well understood. This study reports on in vivo MR guided BH treatment, either with 100 or 200 pulses per focal spot, in three different subcutaneous mouse tumor models: a soft-tissue melanoma (B16OVA), a compact growing thymoma (EL4), and a highly vascularized neuroblastoma (9464D). Extensive treatment evaluation was performed using MR imaging followed by histopathology 2 h after treatment. T2 weighted MRI allowed direct in vivo visualization of the BH lesions in all tumor models. The 100-pulse treated area in the B16OVA tumors was larger than the predicted treatment volume (500 ± 10%). For the more compact growing EL4 and 9464D tumors this was 95 ± 13% and 55 ± 33%, respectively. Histopathology after the 100-pulse treatment revealed completely disintegrated lesions in the treated area with sharp borders in the compact EL4 and 9464D tumors, while for B16OVA tumors the lesion contained a mixture of discohesive (partly viable) clusters of cells, micro-vessel remainings, and tumor cell debris. The treatment of B16OVA with 200 pulses increased the fragmentation of tumor tissue. In all tumor types only micro-hemorrhages were detected after ablation (slightly higher after 200-pulse treatment for the highly vascularized 9464D tumors). Collagen staining revealed that the collagen fibers were to a greater or lesser extent still intact and partly clotted together near the lesion border in all tumor models. In conclusion, this study reveals effective mechanical fragmentation of different tumor types using BH without major hemorrhages. However, treatment settings may need to be adjusted to the tissue characteristics for optimal tissue fragmentation

    In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology

    No full text
    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (2w imaging and H&E stained sections, making T2w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH

    Sialic Acids Sweeten a Tumor's Life

    No full text
    corecore