6 research outputs found

    Strategies for continuous hydrogen production in fixed-bed, anaerobic reactors

    No full text
    O reator anaeróbio de leito fixo tem demonstrado viabilidade para produzir hidrogênio a partir de águas residuárias. No entanto, a liberação do biogás não tem sido contínua devido à diminuição constante da carga orgânica volumétrica específica (COVe) causada pelo acúmulo de biomassa no leito ao longo do tempo. A redução da COVe junto com o envelhecimento da biomassa tem sugerido o estabelecimento de microorganismos consumidores dos constituintes do biogás (H2/CO2) responsáveis por cessar a produção de hidrogênio. Neste trabalho, cinco estratégias foram propostas visando a produção de hidrogênio por longo prazo operacional e com estabilidade, mediante a fixação da COVe, as quais incluíram a alteração da estruturação do leito, inverter o escoamento, realizar descartes periódicos de biomassa e variar a carga orgânica volumétrica aplicada (COV) por meio da variação do tempo de detenção hidráulica (TDH) e da concentração do substrato. Os resultados demonstraram que a manutenção da COVe em um valor adequado permite a produção contínua de hidrogênio. A ordenação do leito, utilizando polietileno de baixa densidade e espuma, e o escoamento descendente favoreceram a diminuição do acúmulo de biomassa e junto com os descartes de biomassa foi possível manter a COVe em um valor estável próximo de 5 g sacarose g-1 SSV d-1. A produção volumétrica de hidrogênio (PVH) foi contínua com valor médio de 0,6 L H2 L-1 d-1 e rendimento (YH2) próximo a 0,5 mol H2 mol-1 sc. Por outro lado, o escoamento ascendente e os descartes de biomassa em reator de leito empacotado e ordenado atingiram uma PVH média de 2,2 ± 0,2 e 3,13 ± 0,07 L H2 L-1 d-1 quando a COVe foi mantida em 2,6 e 4,4 g sacarose g-1 SSV d-1, respectivamente. Por último a variação da COV permitiu manter a COVe entre 3,8 e 6,2 g sacarose g-1 SSV d-1, atingindo um YH2 médio de 2 mol H2 mol-1 sc e um incremento da PHV de 2,4 a 8,9 L H2 L-1 d-1 durante 60 dias consecutivos. Ainda que com resultados satisfatórios referentes à manutenção por longo período operacional e estabilidade na produção de hidrogênio, a supersaturação deste gás no meio líquido, devido a limitações de transferência de massa, foi a principal causa de perdas de hidrogênio neste tipo de reator.Fixed-bed, anaerobic reactor has been shown to be feasible for hydrogen production from wastewater. However, biogas release has not been continuous due to the continuous specific organic load (SOL) decrease, which in turn is caused by biomass accumulation in the bed, through the time. SOL reduction and biomass ageing have indicated the establishment of the microorganisms that consumes the biogas constituents (H2/CO2) as the main cause for ceasing hydrogen production. In this work, five strategies were proposed aiming at obtaining longterm, stable hydrogen production by using SOL maintenance, modifications of the bed structure, flow inversion, periodic biomass discards and diverse organic load rates (OLR), as a function of the hydraulic retention time (HRT) and of the substrate concentration. Results demonstrated that by maintaining the SOL at proper values, continuous hydrogen production can be accomplished. On one hand, structuring the bed by using low-density polyethylene and foam, together with a down-flow and biomass discards were shown to diminish biomass accumulation, which led to keep a stable SOL value close to 5 g sucrose g-1 VSS d-1. Volumetric hydrogen production (VHP) was continuous with an average value of 0.6 L H2 L-1 d-1 and a yield (YH2) close to 0.5 mol H2 mol-1 sc. On the other hand, up-flow with biomass discharges, when implemented structured-bed and packed-bed reactors reached average VHP values of 2.2 ± 0.2 and 3.13 ± 0.07 L H2 L-1 d-1 as SOL was maintained between 2.6 and 4.4 g sucrose g-1 VSS d-1, respectively. Eventually, SOL was kept between 3.8 e 6.2 g sucrose g-1 VSS d-1 by varying the OLR, thus reaching an average YH2 value of 2 mol H2 mol-1 sc and a VHP increase from 2.4 to 8.9 L H2 L-1 d-1, along sixty consecutive days. As a consequence of mass-transfer limitations, oversaturation of hydrogen at the liquid medium was found as the main factor that causes hydrogen losses concerning fixed-bed reactors, even though the proposed strategies did indeed demonstrate long-term and stable hydrogen production

    Influence of the carbon/nitrogen ratio on the hydrogen production in a fixed-bed anaerobic reactor

    No full text
    O presente trabalho avaliou o efeito da relação \'C\'/\'N\' na produção biológica de hidrogênio a partir de água residuária sintética a base de sacarose. Reatores de leito fixo e fluxo ascendente, com polietileno de baixa densidade reciclado para adesão da biomassa, foram operados a 25°C e com um tempo de detenção hidráulica (TDH) de 2 horas. Analisaram-se diferentes relações \'C\'/\'N\' (40, 90, 140 e 190), usando a sacarose e a uréia como fontes de carbono e nitrogênio, respectivamente. Os valores médios de produtividade de \'H IND.2\' foram de 0,6 mol-\'H IND.2\'/mol-sac, 1,3 mol-\'H IND.2\'/mol-sac, 2,2 mol-\'H IND.2\'/mol-sac e 1,7 mol-\'H IND.2\'/mol-sac quando operados os reatores com relações \'C\'/\'N\' iguais a 40, 90, 140 e 190, respectivamente. Encontrou-se um valor ótimo para \'C\'/\'N\' de 137, que resultaria em produtividade de \'H IND.2\' de 3,5 mol-\'H IND.2\'/mol-sac, valor igual ao alcançado na relação \'C\'/\'N\' de 140. O biogás produzido foi composto de \'H IND.2\' e \'CO IND.2\', com valores médios porcentuais para o \'H IND.2\' de 53%, 49%, 61% e 52% para as relações \'C\'/\'N\' de 40, 90, 140 e 190, respectivamente. Os principais produtos intermediários produzidos durante a produção de \'H IND.2\' foram similares em todas as relações \'C\'/\'N\', sendo principalmente detectados ácido acético, ácido butírico e etanol. Sob excesso de nitrogênio, o crescimento da biomassa foi maior com efeitos negativos sobre a produção de hidrogênio, enquanto carência de nitrogênio permitiu o controle do crescimento da biomassa e resultou em maiores produtividades de hidrogênio. Durante os experimentos observou-se queda na produção do biogás provavelmente por atuação de bactérias hidrogênio-oxidantes.This study evaluated the effect of the carbon/nitrogen (\'C\'/\'N\') ratio on the hydrogen production from a sucrose-based synthetic wastewater. Up-flow fixed-bed anaerobic reactors with recycled low-density polyethylene for biomass attachment, were operated at 25ºC and with a 2 hours time of hydraulic detention. Several \'C\'/\'N\' relationship were studied (40, 90, 140 and 190), using sucrose and urea as carbon and nitrogen sources, respectively. The average value of the hydrogen productivity were 0,6 mol-\'H IND.2\'/mol-suc, 1,3 mol-\'H IND.2\'/mol-suc, 2,7 mol-\'H IND.2\'/mol-suc e 1,7 mol-\'H IND.2\'/mol-suc they were reached when the reactors were operated with \'C\'/\'N\' of 40, 90, 140 and 190, respectively. It was found an optimal value for \'C\'/\'N\' of 137, which would result in productivity of 3,5 mol-\'H IND.2\'/mol-suc, an amount equal to that achieved in the \'C\'/\'N\' relationship of 140. Biogas produced was composed of \'H IND.2\' and \'CO IND.2\', with average \'H IND.2\' content 53%, 49%, 61% and 52% for \'C\'/\'N\' of 40, 90, 140 e 190, respectively. The mainly intermediary products during \'H IND.2\' fermentation were similar for all the \'C\'/\'N\' ratios, being specially detected acetic acid, butyric acid and ethanol. Under excess of nitrogen the biomass growth is higher with negative effects on hydrogen production while deprivation of nitrogen permits the control of biomass growth and results in higher hydrogen productivity. During the experiments it was been observed decline in the biogas production, probably because of the action of the hydrogen-oxidizing bacteria

    The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors

    Get PDF
    This study assessed the effect of the carbon/nitrogen (C/N) ratio on the hydrogen production from sucrose-based synthetic wastewater in upflow fixed-bed anaerobic reactors. C/N ratios of 40, 90, 140, and 190 (g C/g N) were studied using sucrose and urea as the carbon and nitrogen sources, respectively. An optimum hydrogen yield of 3.5 mol H2 mol−1 sucrose was obtained for a C/N ratio of 137 by means of mathematical adjustment. For all C/N ratios, the sucrose removal efficiency reached values greater than 80% and was stable after the transient stage. However, biogas production was not stable at all C/N ratios as a consequence of the continuous decreasing of the specific organic loading rate (SOLR) when the biomass accumulated in the fixed-bed, causing the proliferation of H2-consuming microorganisms. It was found that the application of a constant SOLR of 6.0 g sucrose g−1 VSS d−1 stabilized the system

    Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing

    No full text
    International audienceTo provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process
    corecore