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This study assessed the effect of the carbon/nitrogen (C/N) ratio on the hydrogen production from
sucrose-based synthetic wastewater in upflow fixed-bed anaerobic reactors. C/N ratios of 40, 90, 140, and
190 (g C/gN) were studied using sucrose and urea as the carbon and nitrogen sources, respectively. An
optimum hydrogen yield of 3.5mol H, mol~! sucrose was obtained for a C/N ratio of 137 by means of

mathematical adjustment. For all C/N ratios, the sucrose removal efficiency reached values greater than
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80% and was stable after the transient stage. However, biogas production was not stable at all C/N ratios as
a consequence of the continuous decreasing of the specific organic loading rate (SOLR) when the biomass
accumulated in the fixed-bed, causing the proliferation of H-consuming microorganisms. It was found
that the application of a constant SOLR of 6.0 gsucroseg~!VSSd~! stabilized the system.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Over the last few decades, the fast population growth has
increased the global energy demand, leading to the excessive use of
fossil fuels. Hydrogen gas is a clean alternative energy carrier due
to its high energy yield (122kJg '), and it can be converted into
electricity using a fuel cell. In addition, the hydrogen combustion
process is attractive because it generates only water vapor as
waste [12,43,54]; thus, hydrogen is an environmentally friendly,
combustible source of energy.

The lack of pure hydrogen (H,) in the environment and its high
production cost are the main barriers to using hydrogen as a fuel
source [4]. Processes such as electrolysis and thermal decomposi-
tion of water are more expensive than the standard methods that
are used for the production of fossil fuels [9]. Nonetheless, the
Hydrogen National Program of the United States estimates that in
2025, hydrogen will account for 10% of the total global energy
market [43].
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Currently, hydrogen is produced primarily by reformation of
natural gas, high-density fuels, and naphtha. However, it can also
be produced biologically by phototrophic organisms or through a
fermentation process [11]. Biological hydrogen production is
sustainable when the energy source is obtained from organic
compounds that are present in industrial or domestic wastewater
or solid waste. These sources are widely available and inexpensive,
and it is necessary to treat them to control environmental pollution
[6]. Furthermore, fermentative hydrogen production can be
performed under non-sterile conditions at ambient temperatures
and pressures without light, and there are no oxygen limitation
problems [2,8,25].

Through the fermentative process, complex organic compounds
such as carbohydrates are broken into simpler compounds, e.g.,
organic acids and alcohols; this process is accompanied by
hydrogen release from both facultative and strict anaerobic
microorganisms [52]. In this process, several factors such as the
type of reactor [6,22,46,57], hydraulic retention time (HRT) [5,13],
organic loading rate (OLR) [21,26,50], inoculum and pre-treat-
ments [45,47], degree of back-mixing [34], and pH can affect the
hydrogen production [57]. Furthermore, the characteristics of the
wastewater are extremely important because the hydrogen yield
depends on the organic compounds and nutrients that are
available to the microorganismes.

Macronutrients (N, P, and S) and micronutrients (K, Mg, Ca, Fe,
Mn, Co, Cu, Mo, and Zn) are essential for biological metabolism
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[41]. Often, the nutritional needs of a microorganism are defined
by an analysis of the cell’s chemical composition, and the
substances necessary for the vital functions of a microorganism
are called limiting factors [38]. Thus, excess or insufficient levels of
nutrients in the medium might affect the biological activity and
microbial diversity, causing variations in the predominant
fermentation products [43].

According to Wang and Wan [57], nitrogen concentration plays
an important role in fermentative hydrogen production because
nitrogen is part of the proteins, nucleic acids, and enzymes that are
responsible for the growth of hydrogen producers [57]. Excess
nitrogen may inhibit hydrogen production because of changes in
the microbial structure and the consequent shifting of the
metabolic pathway [29,42]. In addition, low nitrogen concen-
trations might compromise cell growth [35].

Several papers have been published regarding adequate
nitrogen concentrations for improving hydrogen production, but
it is not possible to define an optimal carbon/nitrogen ratio due to
the differences between the configuration and operation of the
fermentative process. For example, Lin and Lay [35] showed that
the best hydrogen yield of 4.8 mol H, mol~! sucrose was reached
with a C/N ratio of 47, and Cheong and Hansen [9] observed a
maximum hydrogen rate of 25mLH,h~'g~! at a C/N ratio of 30
[9,35]. The aforementioned authors concluded that a high
concentration of nitrogen is necessary to improve the hydrogen
production.

In contrast, Argun et al. [4] observed that an adequate nitrogen
concentration depends on the phosphorus concentration in the
medium. That is, systems with a low phosphorus concentration
require a low nitrogen concentration and vice versa. However, in
their research, the best hydrogen yield of 281 mLH, g~ ! starch was
obtained at a C/N ratio of 200 and a C/P ratio of 1000, namely, for
lower concentrations of nutrients [4].

Peixoto et al. [44] showed a similar example when added urea
(COD:N of 100:0.7) was used as the nitrogen source in one of their
upflow fixed-bed reactors. Under that condition, the hydrogen
production ceased completely after eight days of operation. In
contrast, the reactor with a COD:N ratio of 100:0.3 produced
hydrogen continuously for seventy days with an average
hydrogen yield of 3.5molH,mol~! substrate. These authors
suggested that the excessive cell growth caused by the addition
of nutrients affected the reactor hydrodynamic pattern, hindering
the liquid-gas transfer mass of hydrogen. In addition, the
decrease of the HRT increased the production of non-reduced
compounds Peixoto et al. [44].

Wang and Wan [57] summarized six studies in which the
optimal nitrogen concentration varied from 0.01 to 7gNL™! in
batch reactors with various substrates, inocula, and nitrogen
sources. However, the differences among the hydrogen measure-
ment parameters were the main source of difficulty in comparing
the performance of those systems. These authors suggested that
additional research on the effects of the nitrogen concentration in
continuous systems must be performed [57].

The published data in the literature indicate the importance of
the C/N ratio in the fermentative process. However, on one hand,
low nitrogen concentrations may lead to nutritional deficiency,
affecting hydrogen yield and productivity. On the other hand, high
nitrogen concentrations tend to improve the assimilative metabo-
lism, thus resulting in a high cellular concentration, which in turn
could lead to adverse changes in the microbial pathways.
Furthermore, it is noted that the biomass accumulation, mainly
in fixed-bed reactors, leads to low specific organic load rates
(SOLRs), which could give rise to improved homoacetogenic
activity, thus resulting in a decrease in the overall hydrogen
production. In this context, the existence of an optimum C/N ratio
for fixed-bed reactors is hypothesized in this study.

Based on both the literature data and the stated hypothesis, this
paper aimed to identify the C/N ratio that maximizes the hydrogen
production of a fermentative process in a continuous system. C/N
ratios of 40, 90, 140, and 190 were used in a continuous upflow
fixed-bed anaerobic reactor to produce hydrogen from synthetic
wastewater. A second objective, namely, to estimate the SOLR as a
function of time in upflow fixed-bed anaerobic reactors, was
achieved through this research.

2. Materials and methods
2.1. Reactors

Experiments were carried out in upflow fixed-bed anaerobic
reactors, as depicted in Fig. 1. Each reactor consisted of an acrylic
tube with an internal diameter of 80 mm, an external diameter of
88 mm, and a length 750 mm, with a total volume of 3.8 L. Each
tube had four compartments: feeding (100 mm), fixed-bed
(500 mm), effluent outlet (100mm) and headspace for gas
collection (50 mm). The reactors were sealed to avoid gas leakage
during the experiments.

2.2. Support for biomass attachment

Cylinder-shaped particles of recycled low-density polyethylene
with diameters between 7.1 mm and 17.5mm and a length of
approximately 30 mm were used as support for biomass attach-
ment. The material provided a surface area of 7.9 m?g~' with no
porosity. Each bed contained 374g support L' bed with a
uniformity coefficient of 1.20, resulting in a bed porosity of 60%.

2.3. Lab-made wastewater

The synthetic wastewater with a COD of 2gL~! was mainly
composed of sucrose (1789.2mgL~') and urea (40.6mgL~!,
179 mgL~!, 11.5mgL~}, and 8.5mgL~! for C/N ratios of 40, 90,
140, and 190, respectively). The C/N ratios were calculated based
on the percentages of carbon and nitrogen by mass in sucrose
(C12H22011) and urea (CH4N,0). Micronutrients were added
according to Peixoto et al. [44]: NiSO46H,0 (0.5mgL™!),
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Fig. 1. Upflow fixed-bed anaerobic reactor for biological hydrogen production.
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FeS0,-7H,0 (2.5mgL™1!), FeCl;-6H,0 (0.25mgL~!), CoCl,-2H,0
(0.04mgL '), CaCl,-6H,0 (2.06mgL '), SeO, (0.036mgL 1),
KH,PO,4 (536 mgL~"), K;HPO4 (1.3mgL™"), and Na,HPO,4-2H,0
(2.7mgL™"). The pH was maintained at approximately 6.5 by the
addition of NaHCOs and HCI.

2.4. Inoculum

The natural inoculum was obtained according to procedures
described by Leite [33] and Peixoto et al. [44]. Inoculum was
generated during fermentation of the synthetic wastewater.
Natural fermentation of 40L of synthetic wastewater occurred
after five days of exposure to the atmosphere at approximately
25°C for each C/N ratio. The fermented solution was re-circulated
through the reactor with a flow rate of 1.5Lh~! for one week to
promote biomass attachment. After that period, the fermented
solution was discarded and unfermented synthetic wastewater
was added, starting the continuous feeding.

2.5. Systems operation

The C/N ratios of 40, 90, 140, and 190 were assayed separately.
The reactors were operated continuously for sixty days with an
HRT of 2 h and 25 +1°C using a temperature-controlled chamber.
The ORL applied was 21.4 g sucrose L' d~'. Synthetic wastewater
was prepared every day to avoid fermentation in the storage tank.
Monitoring of the reactor’s performance consisted of collecting
and analyzing gas and liquid (effluent) samples four times a week.
At the end of each operation, the added and suspended biomass
inside the reactor was quantified, and a sample was used for the
molecular biology analysis.

2.6. Physicochemical analysis

The flow rate of the produced biogas was measured by a type
TG1 gas meter, Ritter Inc., Germany. The biogas composition
(Hy, CHy4, and CO,) was determined according to the method of
Stenerson [53] by gas chromatography (GC-2021, Shimadzu) using
a thermal conductivity detector (TCD) and Supelco Carboxen 1010
plot column (30 m x 0.32 mm). Argon was used as the carrier gas.
The temperatures of the injector, detector, and column were kept
at 30°C, 200°C, and 230°C, respectively.

The concentrations of volatile acids (acetic, propionic,
isobutyric, isovaleric, valeric, and caproic acids) and alcohols
(ethanol, methanol, and n-butanol) were measured according to
Adorno et al. [1] using a Shimadzu GC-2010 gas chromatography
system equipped with a flame ionization detector (FID). Samples
were introduced using COMBI-PAL headspace vials (AOC 5000
model and HP-INNOWax column of 30 m x 0.25 mm x 0.25 pm of
film thickness).

The sucrose analysis was performed as proposed by Dubois
et al. [16]. The analyses of the chemical oxygen demand (COD),
volatile suspended solids (VSS), total volatile solids (TVS), and pH
were performed according to standard methods [3].

2.7. Molecular techniques

2.7.1. DNA extraction

DNA extraction from the sludge sample was performed using a
protocol based on those of Grobkopf et al. [20] and Neria-Gonzalez
et al. [40], as described previously by Silva et al. [51].

2.7.2. 16S rRNA gene library

To construct a 16S rRNA gene library, DNA amplification was
performed using the bacterial primer set 27f and 1100r [31]. The
50 L reaction mixtures contained 50-100 ng of total DNA, 2 U of

Taq DNA polymerase (Invitrogen®), 1X Taq buffer, 1.5 mM MgCls,
0.2mM dNTP mix (GE Healthcare), and 0.4 .M primer. The PCR
amplification was carried out in triplicate using an initial
denaturation step of 2min at 95°C; 30 cycles of 1 min at 94°C,
1 min at55°C, and 3 min at 72 °C; and a final extension step at 72 °C
for 3min in an Eppendorf thermal cycler.

2.7.3. Cloning and sequencing of the 16S rRNA PCR products

The PCR products were pooled, purified using the GFX™ PCR
DNA and Gel Band Purification kit (GE Healthcare), and concen-
trated in a 5301 Eppendorf speed vacuum concentrator with an
A-2-VC rotor. The purified PCR products (200 ng) were ligated into
a pGEM-T Easy Vector (Promega) according to the manufacturer’s
instructions and  transformed into  Escherichia  coli
JM109 competent cells. Approximately 200 positive clones were
selected for subsequent sequencing. The 16S rRNA inserts were
amplified from the plasmid DNA of the selected clones using the
universal M13 forward (5’-CGC CAG GGT TTT CCC AGT CAC GAC-3')
and reverse primers (5-TTT CAC ACA GGA AAC AGC TAT GAC-3').
PCR was performed in a 50 L reaction volume containing 1-2 L
of an overnight culture, 0.4 WM primer, 0.2 mM dNTP mix, 2 U Taq
DNA polymerase (Invitrogen™), 1X Taq buffer, and 1.5 mM MgCl,.
The amplification program consisted of an initial denaturation
step at 94°C for 3 min and 30 cycles of 94°C/20s, 60°C/20s, and
72°C/90s. The PCR products were purified as previously described
for automated sequencing in the MegaBace 500 DNA Analysis
System (GE Healthcare). The sequencing was carried out using the
10f and 1100r primers (31) and the DYEnamic ET dye terminator
cycle sequencing kit (GE Healthcare), according to the manufac-
turer’s recommendations.

2.7.4. Sequence analysis

Partial 16S rRNA sequences obtained from the clones were
assembled into contigs using the Phred/Phrap/CONSED software
package [17,19]. Identification was performed by comparing the
obtained 16S rRNA contigs with 16S rRNA sequence data for
reference strains, type strains, and environmental clones available
in public databases—GenBank (www.ncbi.nlm.nih.gov) and RDP
(Ribosomal Database Project — Release 9; http://rdp.cme.msu.edu/
)—using the BLASTn and Classifier routines, respectively. The
sequences were aligned using the CLUSTAL X program and
analyzed with MEGA software v.4 [55,56]. Evolutionary distances
were derived from sequence-pair dissimilarities calculated in
MEGA using Kimura’'s DNA substitution model [27]. The neighbor-
joining (NJ) algorithm was used for the phylogenetic reconstruc-
tion. The bootstrap values were calculated from 1000 replicate
runs, and the routines included in the MEGA software program
were used.

2.8. Calculation of the specific organic loading rate (SOLR) throughout
the experiments

The biomass was measured as the dried mass. Egs. (1)-(3) were
used to estimate the produced biomass and the consumed
substrate during the continuous operation:

Total produced biomass (xt):

X7(8) = Xa +Xs +Xq (1)

where x, is the attached biomass and x; is the suspended biomass;
both of these quantities were measured at the end of the
experimental uptime, i.e., after 90 days of continuous operation.
Both the attached and suspended biomass were measured using
the gravimetric method [3]. To quantify the attached biomass,
approximately 100 g of support were collected from the bed. The
sample was washed with deionized water, and then the support
and biomass were dried separately. In the same manner, 50 mL of


http://www.ncbi.nlm.nih.gov
http://rdp.cme.msu.edu/

M.P. Anzola-Rojas et al./Biotechnology Reports 5 (2015) 46-54 49

total liquid drained from the reactor was used to quantify the
suspended biomass. The discharged biomass (x4) was estimated
according to Eq. (2):

Xd(g) = Q[VSS] t1 + VSSz(fz — t]) + VSS3(f3 - tz)
+ ... VSSa(tn — ta1)] (2)

where Q is the liquid flow, VSS, is the concentration of VSS in the
effluent, and t, is the time.
Consumed substrate (s.):

SC(g) = Q[Scl t +552(t2 - tl) +Sc3 (t3 - t2) + .. ~Scn(tn - tn—l)} (3)

where s, is the concentration of substrate consumed.
Therefore, the biomass growth per consumed substrate factor
(Yys) was calculated according to Eq. (4):
XT

Yx/s = ; (4)

Next, Eq. (5) was used to estimate the concentration of biomass
inside the reactor in a given time (Cx,,):

Cxa(g VSSL1) = Fc T/Y*/S x ("a;’“)} 4 Cxo s (5)
u

where V, is the useful volume of the reactor.

Finally, the SOLR in a given time (SOLg,) was calculated by
Eq. (6):
_ Cxp
~ OLR ®)
where OLR is the organic loading rate.

SOLR,(g sucroseg 'VsS d 1)

3. Results and discussion
3.1. Hydrogen production

Hydrogen gas was produced at all C/N ratios in an upflow fixed-
bed reactor. Biogas production and the hydrogen concentration
reached the average values as shown in Table 1. The C/N ratio of
140 produced the highest biogas volume, containing an average of
61.0% hydrogen. The biogas was primarily composed of hydrogen
and carbon dioxide; methane was not detected. The sucrose
conversion efficiency was similar for all C/N ratios, reaching values
above 88%.

The observed maximum hydrogen yields were 1.7, 3.1, 3.5, and
2.9mol H, mol ! sucrose at C/N ratios of 40, 90, 140, and 190,
respectively. Therefore, if all of the sucrose was converted into
acetic acid, the maximum hydrogen yield achieved at a C/N ratio of
140 would be equivalent to 43.5% of the theoretical maximum
value based on the stoichiometry [39].

The maximum hydrogen yield increased 3.5-fold when the C/N
ratio was changed from 40 to 140, but the yield was 17% less under
a C/N ratio of 90 compared with a C/N ratio of 140. Thus, in Fig. 2,
maximum hydrogen yields versus the C/N ratio were fit to a
polynomial function, and the optimum C/N ratio was estimated by
taking its derivative. The optimum C/N ratio has been found to be
137, which produces a maximum yield of 3.5 mol H, mol~! sucrose.
The polynomial fit is empirical, and it was only used to search for

Table 1
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Fig. 2. Maximum hydrogen yield versus C/N ratio. (@) Maximum hydrogen yield,
(—) polynomial curve, (A) final biomass, and (—) final biomass tendency. Final
biomass is the amount of sludge accumulated into the reactor (attached and
suspended) at the end of the continuous operation (90 days).

the maximum value. Such a polynomial fit was also used in other
papers for the same purpose [18,34].

The hydrogen yield variation among the C/N ratios could be
related to the cell growth rate when the nitrogen availability
changed. Fig. 2 shows that the biomass accumulated in the reactor
at the end of the operation, i.e., after 90 days, was inversely related
to the hydrogen yield. Hence, when nitrogen was in excess (a C/N
ratio of 40), energy was mainly employed for assimilation and cell
growth [4,43,44]. Thus, non-producers and/or consumers of
hydrogen most likely grew along with hydrogen-producing
microorganisms, affecting the hydrogen yield.

As soon as the C/N ratio increased up to 140, the cell growth
tended to be lower owing to nutritional deficiencies, favoring
hydrogen release. Nevertheless, with a C/N ratio of 190, the
biomass growth was 10% greater than with a C/N ratio of 140. The
decrease in the hydrogenyield at the same C/N ratio suggested that
a nitrogen deficiency could have limited the enzymatic activity
[43]. The small difference in the final biomasses for C/N ratios of
140 and 190 indicated an alteration of the balance among
hydrogen-producing and non-producing microorganisms [37].

In other studies, the C/N ratio influenced the hydrogen
production because of the variation of the amount of carbon causing
shifts in the pathways, primarily for formation of fermentative
soluble products. However, in this study, variations in nitrogen
affected the cell growth and thus the hydrogen release. Moreover, the
concentrations of the soluble products did not exhibit significant
changes as the nitrogen concentration was altered. Lin and Lay [35]
did not report augmentation of the biomass when the C/N
ratio changed. However, they observed that increasing the C/N ratio
from 40 to 130 by varying the substrate concentration caused a
decrease in the fraction of butyrate from 51% to 39%. In contrast, for
the same C/N ratio range, the fractions of acetate and propionate
increased from 19% to 32% and from 8% to 15%, respectively. In that
study, the optimum C/N ratio reported was 47.

Similarly, when Liu and Shen [37] varied the concentration of
urea from 0.56 to 11.28 g L~ ! in 15 g L~! of starch, the distribution of
the main fermentative products was nearly unchanged, whereas
the best hydrogen yield occurred with 5.64 gL~". However, when
they fixed the content of urea to 5.64gL~! and varied the
concentration of starch from 2 to 32 gL', the fraction of acetic acid

Average values of the upflow fixed bed reactor performance from the 25th day of continuous operation.

C/N ratios Sucrose conversion efficiency (%) Biogas flow rate (mLh™') H, in biogas (%) CO, in biogas (%)
40 88.4+53 131.0+92.1 52.7+79 283 +6.6
90 92.7+71 286.5+172.4 48.8 +10.1 285+72

140 88.5+5.1 423.4+102.9 61.0+6.3 348+5.2

190 89.5+9.7 371.2+122.7 52.1+10.1 30.5+6.6
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Table 2
Average concentration of soluble fermentation products.
C/N ratios Et* (mgL1!) H-Ac” (mgL™") H-Bu® (mgL~") H-Pr! (mgL ") TSFP® (mgL~")
40 476.8 +110.9 324.6+113.9 2133 +138.7 40.0+33.1 1195.8
90 322.0+1251 3142 +£1191 245.5+1375 211+13.8 971.7
140 475.2+130.8 346.7 £95.1 210.5+72.2 346+18.3 11339
190 333.8+112.2 374.0 £118.9 217.2+£106.9 27.7+£19.5 1046.7
2 Ethanol.
b Acetic acid.
¢ Butyric acid.

4 Propionic acid.

¢ Total soluble fermentation products.

increased markedly as the substrate concentration was increased.
It was observed that the best hydrogen yield and specific hydrogen
production occurred at 2gL~! and 24gL~! of substrate, respec-
tively [37]. Accordingly, varying the C/N ratio by altering either the
carbon or nitrogen concentration resulted in different optimum
C/N ratios for enhancing the hydrogen production.

Moreover, because the nutritional needs of an organism depend
on the cell composition, the optimum C/N ratio also depended on
the culture involved in the process [10]. Apparently, mixed cultures
dominated by Clostridium pasteurianum and from wastewater
treatment plants required high nitrogen concentrations to enhance
hydrogen production [35,37,43]. In contrast, mixed cultures from
natural inoculation of sugar, as were used in this research, required
low nitrogen concentrations to improve hydrogen production
Peixoto et al. [44]. Some dominant cultures included micro-
organisms related to the families Ruminococcaceae, Veillonella-
ceae and Clostridiaceae, which are described below through
molecular biology analyses.

3.2. Soluble fermentation products

The primary metabolic pathways for hydrogen production from
sucrose are fermentation patterns of the acetate, butyrate, and
ethanol types [26,60]. Table 2 presents the average concentrations
of acids and solvents produced during the fermentation process.
Ethanol, acetic acid, and butyric acid were the main intermediate
products, and the concentrations were similar at all C/N ratios.
Thus, the C/N ratio did not have a clear influence on the metabolic
pathways.

Acetic acid accounted for approximately 30% of the total soluble
fermentation products, and butyric acid accounted for approxi-
mately 20%. The H-Ac/H-Bu ratio was greater than 1.0; according
to several authors, such a ratio is favorable for hydrogen production
[23,26,29]. However, this ratio must be evaluated with caution
because acetic acid can be produced via heterotrophic or
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autotrophic metabolism, and this statement refers only to the
acetate produced by hydrogen-producing microorganisms. During
the growth of heterotrophic microorganisms on hexoses, two-
thirds of the acetate is formed directly from the sugars according to
Reaction (1), whereas one-third is synthesized via the acetyl-CoA
(Wood-Ljungdahl) pathway according to Reaction (2) [15,39]:

CeH 1206 + 2H,0 — 2CH5COOH +2CO, + 8H* + 8¢~ 1)
CO, +8H"+8e~ — CH3COOH + 2H,0 (2)
Sum: CgH,06 — 3CH3COOH + 2H,0 (3)

Therefore, in this study, some of the acetic acid could have been
produced by homoacetogens, which used the biogas as a substrate
(Reaction (3)). As reported by Oh et al. [42], the same micro-
organisms can shift from hydrogen production to acetic acid
production when biogas—H; and CO,—is available. Then, since the
beginning of the continuous operation, there was most likely a loss
of hydrogen due to the acetic acid production by the homoaceto-
genic pathway.

Ethanol-type fermentation could be favorable for hydrogen
production [48]. Following Reaction (4), 2 moles of hydrogen can
theoretically be produced from sugars [60]. Here, ethanol
accounted for approximately 35% of the total soluble fermentation
products at C/N ratios of 90 and 190 and for 45% at C/N ratios of
40 and 140, suggesting that a portion of the hydrogen could have
been produced by this metabolic pathway.

CeH1206 + H,0 — CsHsOH + CH3COOH + 2H, + 2C0, (4)

Regarding propionic acid, which is associated with low
hydrogen production, Table 2 showed average concentrations less
than 50mgL~! at all C/N ratios. In other words, propionic acid
accounted for less than 4% of the total metabolites, and it exhibited

Time (d)

Fig. 3. (a) Sucrose conversion efficiency - E; (b) biogas production - Qg. C/N ratio of 40 (O); C/N ratio of 90 (A); C/N ratio of 140 (<>); and C/N ratio of 190 ([0).
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Table 3
Biomass and consumed substrate amount at the end of the continuous operation.
C/N ratio 40 90 140 190
Attached biomass - x, (g) 23.7 225 12.9 13.6
Suspended biomass - xs (g) 4.4 6.6 6.4 7.2
Dragged biomass - x4 (g) 78.5 43.1 443 49.4
Total produced biomass - xr (g) 106.7 723 63.6 70.2
Total consumed sucrose - s (g) 2555.8 2598.8 2294.4 25273
Cell growth per consumed substrate factor - Yy/s 0.04 0.03 0.03 0.03
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Fig. 4. SOLR behavior at a C/N ratio of 140 (a) SOLR as a function of time, (b) hydrogen yield relative to SOLR; (<) SOLR (@) hydrogen yield (—) tendency.

no significant alterations during the experimental uptime. These
results indicated that the C/N ratio did not effect propionic acid
production.

3.3. Instability of biogas production

The C/N ratio was determined to be an important parameter for
hydrogen production; hence an adequate amount of nitrogen,
related to the carbon increases the hydrogen yield (C/N of 137).
However, although the fermentative process in a liquid medium
seems to be steady from approximately the 25th day (Fig. 3a), the
volumetric biogas production showed a notorious instability as a
function of time, directly affecting the hydrogen yield. At all C/N
ratios, the biogas increased continuously until it reached its
maximum peak, followed by a constant decline, until production
ceased completely at a C/N ratio of 40 (Fig. 3b).

Soluble fermentation products did not show any alteration
throughout the period of continuous operation. Namely, the
formation of more reduced compounds or metabolites not related
to hydrogen production was not observed. Furthermore, the
chromatography gas analyses detected the absence of methane
during the experimental uptime. Thus, such behavior is thought to
be related to the growth and accumulation of biomass in the fixed-
bed reactor as a function of time. The continuous decrease of the
SOLR from an optimum value could have generated shifts in the
microbial structure.

SOLR was calculated from the estimation of the total biomass
and consumed substrate after 60 days of continuous operation, as
presented in Table 3. It is possible to note that, at all C/N ratios, the
percentage of biomass naturally washed out x4 from the reactor
was approximately 70%, and the cell growth per consumed
substrate factor Yx;s was approximately 0.03.

Fig. 4a shows the continuous decrease of the SOLR as a function
of time, and Fig. 4b shows the hydrogen yield related to the SOLR at
a C/N ratio of 140. It should be noted that higher hydrogen yields
tended to occur at an adequate SOLR, in this case, approximately
6.0 g sucrose g ' VSSd'; this value is within the range suggested
in the literature (4.4-6.4gDQ0O g~ ' VSSd~!) as the most appropri-
ate for hydrogen production [21]. The high values of SOLR during
the first 25 days of continuous operation coincident with the best

hydrogen yields indicate that there was high hydrogen activity,
although the sucrose conversion was low [32].

It has been stated that the SOLR is another factor controlling the
fermentative process [58]. High or low values of the SOLR ratio are
adverse for hydrogen production [21]. Whereas higher values
could cause inhibition owing to substrate overload, lower values
increase the substrate competition, causing shifts in the metabolic
pathways. Lin and Lay [35] observed interference in the electron
flow at high carbon concentrations related to the amount of
biomass, which reduced the hydrogen production due to the
formation of more reduced products such as alcohols.

In this study, changes in the metabolic pathways seemed to be
associated with the establishment of homoacetogenic bacteria
when the SOLR was less than the optimum value. Biogas
consumption, namely, that of hydrogen concomitantly with carbon
dioxide, led to this inference. In addition, the low pH observed in
Fig. 5 and mesophilic conditions could have caused the competi-
tiveness of the homoacetogens to increase [7,15]. Furthermore,
according to Drake et al. [15], these organisms can become even
more competitive for H, when positioned close to H,-producing
bacteria.

Homoacetogens can grow autotrophically on a gas mixture of
H, and CO, by employing the acetyl-CoA pathway. Acetyl-CoA can
be used for anabolic syntheses of biomass, or it can be converted to
acetate [14,15,39]. Here, acetyl-CoA could have been assimilated
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Fig. 5. pH of the effluent at a C/N ratio of 40 (), C/N ratio of 90 (A\), C/N ratio of 140
(<), and C/N ratio of 190 ().
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Fig. 6. Phylogenetic analysis based on the partial 16S rRNA sequences of the clones derived from sludge with a C/N ratio of 90 and the related species. Bootstrap values
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into biomass once the acetic acid concentration did not show an
increase as SOLR was decreased. Molecular biology analyses
revealed similar microorganisms with homoacetogenic features;
however, it was not possible to determine the exact moment at
which these bacteria began to proliferate or at which the
homoacetogenic activity began [42].

3.4. Molecular biology

A total of 153 clones containing inserted 16S rRNA genes
were successfully sequenced. The sequences were compared
with sequences from reference and type strains and from
environmental clones available in the GenBank and RDP II
databases, such as those presented in Fig. 6. Ten sequences were
not included in the phylogenetic analysis due to their short
sequence lengths, but BLASTn analysis revealed five of the
sequences matched family Veillonellaceae and five matched
family Clostridiaceae.

The overwhelming majority of clones (98.7%) were related to
the phylum Firmicutes. Of these, 107 clones (70% of all clones) were
related to the family Ruminococcaceae, with Ethanoligenens
harbinense being the closest species. A few clones showed 99%
sequence similarity with Ethanoligenens harbinense. This bacteri-
um is Gram-positive and a strict anaerobe. It produces ethanol,
acetate, Hy, and CO, as the final products of glucose fermentation.
Here, its growth may have been favored by the low pH of the
system (Fig. 5) [59]. The other clones related to the family
Ruminococcaceae had 16S rRNA sequences similar to uncultured
bacterial clones.

24 clones (15.7%) were related to the family Veillonellaceae.
4 clones were closely related (99% sequence similarity) to the
species Megasphaera paucivorans and Megasphaera sueciensis.
These species grow at temperatures between 15°C and 37°C
and at pH between 4.1 and 4.5. Both M. paucivorans and
M. sueciensis are strict anaerobes. They generate butyric and
isovaleric acids from fructose, glucose, and sucrose and beer
production wastewater. Other intermediate products, such as
acetic, isobutyric, valeric, and caproic acids and H,S, can be
produced in low quantities [24].

The other main group, comprising 15 clones (10%), was related
to the family Clostridiaceae. One clone grouped with the type
strain of Clostridium kluyveri and presented a high bootstrap value
(100%). 3 clones clustered with Clostridium carboxidivorans,
Clostridium beijerinckii, and Clostridium butyricum, but species-
level identification was not possible. 5 clones formed clearly
distinct clusters and most likely represent a new genus in the
family Clostridiaceae.

Both C. butyricum and C. beijerinckii are saccharolytic micro-
organisms; they generate mainly butyrate, acetate, CO,, and H, as
fermentation products [39]. C. kluyveri is not saccharolytic, and its
main fermentative products are butyrate, caproate, and H, from
ethanol and acetate as substrates [39,49].

C. carboxidivorans is an acetogenic and strictly anaerobic species
that is able to grow autotrophically using H,/CO, or CO and
chemiorganotrophically using several sugars, including xylose,
fructose, glucose, and sucrose. It grows at temperatures between
24°C and 42°C and at pH levels between 4.4 and 7.6. Its final
products of metabolism via the autotrophic pathway are acetic
acid, ethanol, and butanol [36]. C. carboxidivorans could have been
responsible for the biogas decrease once the pH and temperature
conditions for its growth were optimum. Furthermore, the H, and
CO, were available to be consumed easily.

4 clones were recovered in a distinct cluster that was not related
to any other family of the phylum Firmicutes. 2 of these clones
grouped with high bootstrap values (100%) with an uncultured
Clostridium bacterium.

One clone was related to the family Sporolactobacillaceae, with
high sequence similarity to Sporolactobacillus inulinus. This
microorganism is mesophilic and microaerophilic. It can produce
lactic acid without gas release from several sugars, such as glucose,
fructose, and sucrose [28].

Finally, one clone showed 99% sequence similarity with
Propionibacterium cyclohexanicum (phylum Actinobacteria, family
Propionibacteriaceae) and was grouped in a tight cluster with the
type strain of this species in the phylogenetic tree. P. cyclo-
hexanicum is aerotolerant, and it is able to produce mainly lactic
and propionic acids from the glucose fermentation. It grows at pH
values between 3.2 and 7.5 (optimum value between 5.5 and 6.5)
and at temperatures between 20°C and 40°C [30]. Likely, the
growth of microorganisms related to the Sporolactobacillaceae and
Propionibacteriaceae families in this study can be attributed to the
micro-aeration from the feeding system (silicone tube) and the
initial pH of approximately 6.5.

4. Conclusions

The C/N ratio was shown to have an influence on hydrogen
production in an upflow fixed-bed anaerobic reactor. Between C/N
ratios of 40 and 190, an optimal C/N ratio of 137 was calculated by
mathematical estimation, producing 3.5molH,mol~! sucrose.
High nitrogen concentrations (C/N < 137) led to excessive cell
growth, whereas low nitrogen levels (C/N>137) suggested
enzymatic activity inhibition. The C/N ratio did not influence
the fermentation patterns; ethanol, butyric acid, and acetic acid
were the main products observed.

Although the results incontestably indicated the strong
influence of the C/N ratio on hydrogen yield, the generation of
biogas was not stable as a function of time for all of the
experiments. Biomass accumulation in the fixed bed, leading to
continuous decrease of the SOLR, was shown to be the main cause
of this behavior. The variation of SOLR could have promoted
changes in the microbial structure and/or biological activity,
favoring the proliferation of adverse microorganisms for hydrogen
production, such as homoacetogens, which were observed in the
microbial analyses. The analysis suggests an SOLR of 6.0 g sucrose
g 1VSSd~! is needed to maintain the stability of the system.
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