164 research outputs found

    Characterization of a new variant DNA (cytosine-5)-methyltransferase unable to methylate double stranded DNA isolated from the marine annelid worm Chaetopterus variopedatus

    Get PDF
    AbstractThe enzyme S-adenosylmethionine-DNA (cytosine-5)-methyltransferase has been identified, first time for invertebrates, in embryos of the marine polychaete annelid worm Chaetopterus variopedatus. The molecule has been isolated from embryos at 15 h of development. It is a single peptide of about 200 kDa molecular weight, cross-reacting with antibodies against sea urchin DNA methyltransferase. The enzymatic properties of the molecule are similar to those of Dnmt1 methyltransferases isolated from other organisms, but with the peculiarity to be unable to make ‘de novo’ methylation on double stranded DNA

    Arthropods on Mars?

    Get PDF
    As presented in this report numerous fossils like forms resembling a variety of marine arthropods including crustaceans, sea spiders, scorpions, arachnids, nematodes, annelids, tube worms, sea snakes, Kimberlla, Namacalathus, Lophotrochozoa, armored trilobites and millipedes have been found in Gale Crater (on Sols 302, 553, 753, 781, 809, 869, 880, 905, 1032), and Meridiani Planum both of which have hosted rivers, lakes, and inland seas. Similar specimens are mixed within a variety of divergent fossillike forms and are also found on distant sediment and mud stone. All specimens are distinct from underlying substrate and there are no obvious patterns or repetitions typically produced by erosion or weathering. Although without extraction and direct examination it is impossible to precisely determine the identity of all these specimens, the same problems bedevil identification of Burgess Shale fossils some of which are presented in this report for comparative analysis. The discoveries presented here and in other reports supports the theory that metazoans and other marine organisms evolved in the lakes, oceans and inland seas of Mars

    Evidence of Genetic Instability in Tumors and Normal Nearby Tissues

    Get PDF
    We have analyzed the sequence heterogeneity of the transcripts of the human HPRT and G6PD single copy genes that are not considered tumor markers. Analyses have been performed on different colon cancers and on the nearby histologically normal tissues of two male patients. Several copies of each cDNA, which were produced by cloning the RT-PCR-amplified fragments of the specific mRNA, have been sequenced. Similar analyses have been performed on blood samples of two ostensibly healthy males as reference controls. The sequence heterogeneity of the HPRT and G6PD genes was also determined on DNA from tumor tissues. The employed analytical approach revealed the presence of low-frequency mutations not detectable by other procedures. The results show that genetic heterogeneity is detectable in HPRT and G6PD transcripts in both tumors and nearby healthy tissues of the two studied colon tumors. Similar frequencies of mutations are observed in patient genomic DNA, indicating that mutations have a somatic origin. HPRT transcripts show genetic heterogeneity also in healthy individuals, in agreement with previous results on human T-cells, while G6PD transcript heterogeneity is a characteristic of the patient tissues. Interestingly, data on TP53 show little, if any, heterogeneity in the same tissues. CONCLUSIONS/SIGNIFICANCE: These findings show that genetic heterogeneity is a peculiarity not only of cancer cells but also of the normal tissue where a tumor arises

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian consensus conference on pain in neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    Searching for the very first instants of Life on Earth: a possible role of M4 materials as prebiotic molecular substrates and extraordinary products

    No full text
    The context for the emergence of Earth is a big puzzle as well as the definition of life itself. Here I report evidence that some terrestrial minerals and meteorites containing iron catalyzing inorganic and organic reactions generating Micro-Metallorganic-Magnetic-Materials (M4) able to perform non-enzymatic catalytic activities typical of modern life. Complexity, chemical composition, interactions with some mineral and/or rocks leave open the possibility that M4 materials might represent a kind of non conventional form of protometabolic complex chemical system from which the ancestors of the first living cells could have evolved on Earth
    • …
    corecore