85 research outputs found

    Uncontrolled sepsis: a systematic review of translational immunology studies in intensive care medicine.

    Get PDF
    BACKGROUND: The design of clinical immunology studies in sepsis presents several fundamental challenges to improving the translational understanding of pathologic mechanisms. We undertook a systematic review of bed-to-benchside studies to test the hypothesis that variable clinical design methodologies used to investigate immunologic function in sepsis contribute to apparently conflicting laboratory data, and identify potential alternatives that overcome various obstacles to improve experimental design. METHODS: We performed a systematic review of the design methodology employed to study neutrophil function (respiratory burst), monocyte endotoxin tolerance and lymphocyte apoptosis in the intensive care setting, over the past 15 years. We specifically focussed on how control samples were defined, taking into account age, gender, ethnicity, concomitant therapies, timing of sample collection and the criteria used to diagnose sepsis. RESULTS: We identified 57 eligible studies, the majority of which (74%) used case-control methodology. Healthy volunteers represented the control population selected in 83% of studies. Comprehensive demographic data on age, gender and ethnicity were provided in ≤48% of case control studies. Documentation of diseases associated with immunosuppression, malignancy and immunomodulatory therapies was rare. Less than half (44%) of studies undertook independent adjudication for the diagnosis of sepsis while 68% provided microbiological data. The timing of sample collection was defined by highly variable clinical criteria. By contrast, surgical studies avoided many such confounders, although only one study in surgical patients monitored the study group for development of sepsis. CONCLUSIONS: We found several important and common limitations in the clinical design of translational immunologic studies in human sepsis. Major elective surgery overcame many of these methodological limitations. The failure of adequate clinical design in mechanistic studies may contribute to the lack of translational therapeutic progress in intensive care medicine

    Glucagon-Like Peptide-1 (GLP-1) Mediates Cardioprotection by Remote Ischaemic Conditioning

    Get PDF
    AIMS: Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1). METHODS AND RESULTS: A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used. Remote ischaemic pre- (RIPre) and perconditioning (RIPer) was induced by 15 min occlusion of femoral arteries applied prior to or during the myocardial ischaemia. The degree of RIPre and RIPer cardioprotection was determined in conditions of cervical or subdiaphragmatic vagotomy, or following blockade of GLP-1 receptors (GLP-1R) using specific antagonist Exendin(9-39). Phosphorylation of PI3K/AKT and STAT3 was assessed. RIPre and RIPer reduced infarct size by ~50%. In conditions of bilateral cervical or subdiaphragmatic vagotomy RIPer failed to establish cardioprotection. GLP-1R blockade abolished cardioprotection induced by either RIPre or RIPer. Exendin(9-39) also prevented RIPre-induced AKT phosphorylation. Cardioprotection induced by GLP-1R agonist Exendin-4 was preserved following cervical vagotomy, but was abolished in conditions of M3 muscarinic receptor blockade. CONCLUSIONS: These data strongly suggest that GLP-1 functions as a humoral factor of remote ischaemic conditioning cardioprotection. This phenomenon requires intact vagal innervation of the visceral organs and recruitment of GLP-1R-mediated signalling. Cardioprotection induced by GLP-1R agonism is mediated by a mechanism involving M3 muscarinic receptors

    Transcriptional response of the heart to vagus nerve stimulation.

    Get PDF
    Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF, and stimulated using light. RNA sequencing of left ventricular myocardium identified 294 differentially expressed genes (DEGs, false discovery rate <0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z-score of ≥2/≤-2, including EIF-2, IL-2, Integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signalling, inflammation, and hypertrophy. IPA further predicted that the identified DEGs were the targets of 50 upstream regulators, including transcription factors (e.g., MYC, NRF1) and microRNAs (e.g., miR-335-3p, miR-338-3p). These data demonstrate that the vagus nerve has a major impact on myocardial expression of genes involved in regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart

    Neuromodulation of innate immunity by remote ischaemic conditioning in humans: Experimental cross-over study.

    Get PDF
    Experimental animal studies on the mechanisms of remote ischaemic conditioning (RIC)-induced cardioprotection against ischaemia/reperfusion injury demonstrate involvement of both neuronal and humoral pathways. Autonomic parasympathetic (vagal) pathways confer organ protection through both direct innervation and/or immunomodulation, but evidence in humans is lacking. During acute inflammation, vagal release of acetylcholine suppresses CD11b expression, a critical β2-integrin regulating neutrophil adhesion to the endothelium and transmigration to sites of injury. Here, we tested the hypothesis that RIC recruits vagal activity in humans and has an anti-inflammatory effect by reducing neutrophil CD11b expression. Participants (age:50 ​± ​19 years; 53% female) underwent ultrasound-guided injection of local anaesthetic within the brachial plexus before applying 3 ​× ​8 min cycles of brachial artery occlusion using a blood pressure cuff (RICblock). RIC was repeated 6 weeks later without brachial plexus block. Masked analysers quantified vagal activity (heart rate, heart rate variability (HRV)) before, and 10 ​min after, the last cycle of RIC. RR-interval increased after RIC (reduced heart rate) by 40 ​ms (95% confidence intervals (95%CI):13-66; n ​= ​17 subjects; P ​= ​0.003). RR-interval did not change after brachial plexus blockade (mean difference: 20 ​ms (95%CI:-11 to 50); P ​= ​0.19). The high-frequency component of HRV was reduced after RICblock, but remained unchanged after RIC (P ​< ​0.001), indicating that RIC preserved vagal activity. LPS-induced CD16+CD11b+ expression in whole blood (measured by flow cytometry) was reduced by RIC (3615 median fluorescence units (95%CI:475-6754); P = 0.026), compared with 2331 units (95%CI:-3921 to 8582); P = 0.726) after RICblock. These data suggest that in humans RIC recruits vagal cardiac and anti-inflammatory mechanisms via ischaemia/reperfusion-induced activation of sensory nerve fibres that innervate the organ undergoing RIC

    Autonomic regulation of systemic inflammation in humans: A multi-center, blinded observational cohort study.

    Get PDF
    OBJECTIVE: Experimental animal models demonstrate that autonomic activity regulates systemic inflammation. By contrast, human studies are limited in number and exclusively use heart rate variability (HRV) as an index of cardiac autonomic regulation. HRV measures are primarily dependent on, and need to be corrected for, heart rate. Thus, independent autonomic measures are required to confirm HRV-based findings. Here, the authors sought to replicate the findings of preceding HRV-based studies by using HRV-independent, exercise-evoked sympathetic and parasympathetic measures of cardiac autonomic regulation to examine the relationship between autonomic function and systemic inflammation. METHODS: Sympathetic function was assessed by measuring heart rate changes during unloaded pedaling prior to onset of exercise, divided into quartiles; an anticipatory heart rate (AHRR) rise during this period is evoked by mental stress in many individuals. Parasympathetic function was assessed by heart rate recovery (HRR) 60s after finishing cardiopulmonary exercise testing, divided into quartiles. Parasympathetic dysfunction was defined by delayed heart rate recovery (HRR) ≤12.beats.min-1, a threshold value associated with higher cardiovascular morbidity/mortality in the general population. Systemic inflammation was primarily assessed by neutrophil-lymphocyte ratio (NLR), where a ratio >4 is prognostic across several inflammatory diseases and correlates strongly with elevated plasma levels of pro-inflammatory cytokines. High-sensitivity C-reactive protein (hsCRP) was also measured. RESULTS: In 1624 subjects (65±14y; 67.9% male), lower HRR (impaired vagal activity) was associated with progressively higher NLR (p=0.004 for trend across quartiles). Delayed HRR, recorded in 646/1624 (39.6%) subjects, was associated with neutrophil-lymphocyte ratio >4 (relative risk: 1.43 (95%CI: 1.18-1.74); P=0.0003). Similar results were found for hsCRP (p=0.045). By contrast, AHRR was not associated with NLR (relative risk: 1.24 (95%CI: 0.94-1.65); P=0.14). CONCLUSIONS: Delayed HRR, a robust measure of parasympathetic dysfunction, is independently associated with leukocyte ratios indicative of systemic inflammation. These results further support a role for parasympathetic modulation of systemic inflammation in humans.British Journal of Anaesthesia/Royal College of Anaesthetists’ Basic Science Career development fellowship [GLA]; UCLH/UCL NIHR Biomedical Research Centre; British Heart Foundation Programme Grant RG/14/4/30736 [GLA]

    Preoperative systemic inflammation and perioperative myocardial injury: prospective observational multicentre cohort study of patients undergoing non-cardiac surgery

    Get PDF
    Medical Research Council and British Journal of Anaesthesia clinical research training fellowship (grant reference MR/M017974/1) to T.E.F.A.; UK National Institute for Health Research Professorship to R.P.; British Journal ofAnaesthesia/Royal College of Anaesthetists basic science Career Development award, British Oxygen Company research chair grant in anaesthesia from the Royal College of Anaesthetists, and British Heart Foundation Programme Grant (RG/14/4/30736) to G.L.A

    E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

    Get PDF
    BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity

    Several Distinct Polycomb Complexes Regulate and Co-Localize on the INK4a Tumor Suppressor Locus

    Get PDF
    Misexpression of Polycomb repressive complex 1 (PRC1) components in human cells profoundly influences the onset of cellular senescence by modulating transcription of the INK4a tumor suppressor gene. Using tandem affinity purification, we find that CBX7 and CBX8, two Polycomb (Pc) homologs that repress INK4a, both participate in PRC1-like complexes with at least two Posterior sex combs (Psc) proteins, MEL18 and BMI1. Each complex contains a single representative of the Pc and Psc families. In primary human fibroblasts, CBX7, CBX8, MEL18 and BMI1 are present at the INK4a locus and shRNA-mediated knockdown of any one of these components results in de-repression of INK4a and proliferative arrest. Sequential chromatin immunoprecipitation (ChIP) reveals that CBX7 and CBX8 bind simultaneously to the same region of chromatin and knockdown of one of the Pc or Psc proteins results in release of the other, suggesting that the binding of PRC1 complexes is interdependent. Our findings provide the first evidence that a single gene can be regulated by several distinct PRC1 complexes and raise important questions about their configuration and relative functions

    Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Get PDF
    BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature

    Essential Medicines at the National Level : The Global Asthma Network's Essential Asthma Medicines Survey 2014

    Get PDF
    Patients with asthma need uninterrupted supplies of affordable, quality-assured essential medicines. However, access in many low- and middle-income countries (LMICs) is limited. The World Health Organization (WHO) Non-Communicable Disease (NCD) Global Action Plan 2013-2020 sets an 80% target for essential NCD medicines' availability. Poor access is partly due to medicines not being included on the national Essential Medicines Lists (EML) and/or National Reimbursement Lists (NRL) which guide the provision of free/subsidised medicines. We aimed to determine how many countries have essential asthma medicines on their EML and NRL, which essential asthma medicines, and whether surveys might monitor progress. A cross-sectional survey in 2013-2015 of Global Asthma Network principal investigators generated 111/120 (93%) responses41 high-income countries and territories (HICs); 70 LMICs. Patients in HICs with NRL are best served (91% HICs included ICS (inhaled corticosteroids) and salbutamol). Patients in the 24 (34%) LMICs with no NRL and the 14 (30%) LMICs with an NRL, however no ICS are likely to have very poor access to affordable, quality-assured ICS. Many LMICs do not have essential asthma medicines on their EML or NRL. Technical guidance and advocacy for policy change is required. Improving access to these medicines will improve the health system's capacity to address NCDs.Peer reviewe
    corecore