6 research outputs found

    Purification and characterization of apolipoprotein J

    Get PDF
    [[abstract]]Apolipoprotein J (apoJ), a unique 70-kDa component of high density lipoproteins in human plasma, consists of two disulfide-linked subunits designated apoJ alpha (34-36 kDa), and apoJ beta (36-39 kDa) which share pI values of 4.9-5.4 and which are recognized by a monoclonal antibody (mAb) 11. ApoJ and its subunits were purified to homogeneity from plasma by a combination of immunoaffinity chromatography, using mAb11 linked to Affi-Gel, and reverse-phase high performance liquid chromatography. ApoJ alpha and apoJ beta are both glycoproteins. When deglycosylated, the molecular mass of apoJ alpha is 24 kDa and that of apoJ beta is 28 kDa, suggesting that approximately 30% of the mass of each subunit is carbohydrate. The amino acid compositions of apoJ alpha and apoJ beta are very similar; however, the sequences of the first 30-amino acid residues are distinct. A comparison of peptide maps suggests that apoJ alpha and apoJ beta are not identical but share limited regions of homology. This possibility is supported by immunochemical data. Five additional mAb specific for apoJ were characterized. One of the mAb, like mAb11, reacts with both apoJ alpha and apoJ beta; the others react with apoJ alpha only. All mAb, including those which recognize both apoJ alpha and apoJ beta and those which recognize apoJ alpha only, immunoprecipitate a approximately 50-kDa protein synthesized from a liver mRNA template translated in a rabbit reticulocyte lysate. We propose that the apoJ alpha and apoJ beta subunits, which have limited homology, are derived by proteolytic cleavage of a common precursor

    Human Brain Evolution: Ontogeny and Phylogeny

    No full text

    Endocasts and the evo-devo approach to study human brain evolution

    No full text
    The brain is a highly plastic organ and is shaped not only during prenatal but also during postnatal development. The analysis and comparison of ontogenetic patterns of endocranial size increase and endocranial shape changes can therefore add further evidence for the interpretation of hominin brain evolution. Here we focus on digital endocast data and the methodology used to document and compare developmental patterns of endocranial shape changes. We outline how geometric morphometrics of endocranial landmark data can be used in an evo-devo approach to human brain evolution, discuss how developmental simulations help to compare ontogenetic patterns among species, present different visualization techniques that help to interpret ontogenetic shape changes, provide an overview of our current knowledge, present new data on early postnatal shape changes in apes, and discuss open questions

    Relationship Among a Supernova, a Transition of Polarity of the Geomagnetic Field and the Pliocene-Pleistocene Boundary

    No full text
    After the Middle Miocene, two important climatic changes took place, consisting mainly of cooling in both hemispheres. One occurred between 7.0 and 5.4 Ma and another at the end of the Pliocene, which marked the beginning of the Pleistocene in approximately 2.58 Ma. The proposal of thispresentation is to analyze diverse forcings of these climatic changes, such as the influence of the joint occurrence of reversions of the geomagnetic field andexplosions of a supernova. These events occurred coincidentally with thecooling of Earth. Also, biological changes in those time intervals are analyzed,especially the evolution of the Hominins since the oldest hominin fossils. Thecharacteristics of the Galactic Cosmic Rays, its influence on the climate and its potential mutogenetic effect were taken into account.Briefly, according to our analysis, it seems to be evident that together withother factors, the joint occurrence of the explosion of a supernova at less than100 pc from the Earth and the weakening and/or reversion of the GeomagneticField was an important factor that promoted these two climatic and ecosystemchanges.Fil: Compagnucci, Rosa Hilda. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orgeira, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Sinito, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cappellotto, Luiggina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Plastani, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin

    The Evolution of Human Brain Development

    No full text
    corecore