35 research outputs found

    Molecule mapping of HR8799b using OSIRIS on Keck: Strong detection of water and carbon monoxide, but no methane

    Full text link
    Context. In 2015, Barman et al. (ApJ, 804, 61) presented detections of absorption from water, carbon monoxide, and methane in the atmosphere of the directly imaged exoplanet HR8799b using integral field spectroscopy (IFS) with OSIRIS on the Keck II telescope. We recently devised a new method to analyse IFU data, called molecule mapping, searching for high-frequency signatures of particular molecules in an IFU data cube. Aims. The aim of this paper is to use the molecule mapping technique to search for the previously detected spectral signatures in HR8799b using the same data, allowing a comparison of molecule mapping with previous methods. Methods. The medium-resolution H- and K-band pipeline-reduced archival data were retrieved from the Keck archive facility. Telluric and stellar lines were removed from each spectrum in the data cube, after which the residuals were cross-correlated with model spectra of carbon monoxide, water, and methane. Results. Both carbon monoxide and water are clearly detected at high signal-to-noise, however, methane is not retrieved. Conclusions. Molecule mapping works very well on the OSIRIS data of exoplanet HR8799b. However, it is not evident why methane is detected in the original analysis, but not with the molecule mapping technique. Possible causes could be the presence of telluric residuals, different spectral filtering techniques, or the use of different methane models. We do note that in the original analysis methane was only detected in the K-band, while the H-band methane signal could be expected to be comparably strong. More sensitive observations with the JWST will be capable of confirming or disproving the presence of methane in this planet at high confidence.Comment: 5 pages, 5 figures and 2 tables, accepted by A&

    New constraints on the HR 8799 planetary system from mid-infrared direct imaging

    Get PDF
    Direct imaging is a tried and tested method of detecting exoplanets in the near-infrared (IR), but has so far not been extended to longer wavelengths. New data at mid-IR wavelengths (8-20 μm) can provide additional constraints on planetary atmospheric models. We use the VLT Imager and Spectrometer for the mid-IR (VISIR) instrument on the VLT to detect or set stringent limits on the 8.7 μm flux of the four planets surrounding HR 8799, and to search for additional companions. We use a novel circularized point spread function subtraction technique to reduce the stellar signal and obtain instrument limited background levels and obtain optimal flux limits. The BT SETTL isochrones are then used to determine the resulting mass limits. We find flux limits between 0.7 and 3.3 mJy for the J8.9 flux of the different planets at better than 5σ level and derive a new mass limit of 30 MJup for any objects beyond 40 au. While this work has not detected planets in the HR 8799 system at 8.7 μm, it has found that an instrument with the sensitivity of VISIR is sufficient to detect at least four known hot planets around close stars, including β Pictoris b (1700 K, 19 pc), with more than 5σ certainty in 10 h of observing time in the mid-IR

    High contrast imaging at ten microns, a search for exoplanets around: Eps Indi A, Eps Eri, Tau Ceti, Sirius A and Sirius B

    Get PDF
    © ESO 2021. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1051/0004-6361/202140529The direct imaging of rocky exoplanets is one of the major science goals for upcoming large telescopes. The contrast requirement for imaging such planets is challenging. However, the mid-IR (InfraRed) regime provides the optimum contrast to directly detect the thermal signatures of exoplanets in our solar neighbourhood. We aim to exploit novel fast chopping techniques newly developed for astronomy with the aid of adaptive optics to look for thermal signatures of exoplanets around bright stars in the solar neighbourhood. We use the upgraded VISIR (Very Large Telescope Imager and Spectrometer for the mid-InfraRed) instrument with high contrast imaging (HCI) capability optimized for observations at 10~μ\mum to look for exoplanets around five nearby (dd <4 pc) stars. The instrument provides an improved signal-to-noise (S/N) by a factor of ∼\sim4 in the N-band compared to standard VISIR for a given S/N and time. In this work we achieve a detection sensitivity of sub-mJy, which is sufficient to detect few Jupiter mass planets in nearby systems. Although no detections are made we achieve most sensitive limits within $Peer reviewe

    Spatially resolving polycyclic aromatic hydrocarbons in Herbig Ae disks with VISIR-NEAR at the VLT

    Get PDF
    We use the long-slit spectroscopy mode of the VISIR-NEAR experiment to perform diffraction-limited observations of eight nearby Herbig Ae protoplanetary disks. We extract spectra for various locations along the slit with a spectral resolution of R = 300 and perform a compositional fit at each spatial location using spectral templates of silicates and the four PAH bands. This yields the intensity vs. location profiles of each species. Results. We could obtain spatially-resolved intensity profiles of the PAH emission features in the N-band for five objects (AB Aurigae, HD 97048, HD 100546, HD 163296, and HD 169142). We observe two kinds of PAH emission geometry in our sample: centrally-peaked (HD 97048) and ring-like (AB Aurigae, HD 100546, HD 163296, and potentially HD 169142). Comparing the spatial PAH emission profiles with near-infrared scattered light images, we find a strong correlation in the disk sub-structure but a difference in radial intensity decay rate. The PAH emission shows a less steep decline with distance from the star. Finally, we find a correlation between the presence of (sub-) micron-sized silicate grains leading to the depletion of PAH emission within the inner regions of the disks. In this work, we find the following: (1) PAH emission traces the extent of Herbig Ae disks to a considerable radial distance. (2) The correlation between silicate emission within the inner regions of disks and the depletion of PAH emission can result from dust-mixing and PAH coagulation mechanisms and competition over UV photons. (3) For all objects in our sample, PAHs undergo stochastic heating across the entire spatial extent of the disk and are not saturated. (4) The difference in radial intensity decay rates between the PAHs and scattered-light profiles may be attributed to shadowing and dust-settling effects, which affect the scattering grains more than the PAHs

    Detection of Carbon Monoxide in the Atmosphere of WASP-39b Applying Standard Cross-Correlation Techniques to JWST NIRSpec G395H Data

    Full text link
    Carbon monoxide was recently reported in the atmosphere of the hot Jupiter WASP-39b using the NIRSpec PRISM transit observation of this planet, collected as part of the JWST Transiting Exoplanet Community Early Release Science (JTEC ERS) Program. This detection, however, could not be confidently confirmed in the initial analysis of the higher resolution observations with NIRSpec G395H disperser. Here we confirm the detection of CO in the atmosphere of WASP-39b using the NIRSpec G395H data and cross-correlation techniques. We do this by searching for the CO signal in the unbinned transmission spectrum of the planet between 4.6 and 5.0 μ\mum, where the contribution of CO is expected to be higher than that of other anticipated molecules in the planet's atmosphere. Our search results in a detection of CO with a cross-correlation function (CCF) significance of 6.6σ6.6 \sigma when using a template with only 12C16O{\rm ^{12}C^{16}O} lines. The CCF significance of the CO signal increases to 7.5σ7.5 \sigma when including in the template lines from additional CO isotopologues, with the largest contribution being from 13C16O{\rm ^{13}C^{16}O}. Our results highlight how cross-correlation techniques can be a powerful tool for unveiling the chemical composition of exoplanetary atmospheres from medium-resolution transmission spectra, including the detection of isotopologues.Comment: Accepted for publication in The Astrophysical Journal Letter

    Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM

    Full text link
    Transmission spectroscopy of exoplanets has revealed signatures of water vapor, aerosols, and alkali metals in a few dozen exoplanet atmospheres. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species−-in particular the primary carbon-bearing molecules. Here we report a broad-wavelength 0.5-5.5 μ\mum atmospheric transmission spectrum of WASP-39 b, a 1200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with JWST NIRSpec's PRISM mode as part of the JWST Transiting Exoplanet Community Early Release Science Team program. We robustly detect multiple chemical species at high significance, including Na (19σ\sigma), H2_2O (33σ\sigma), CO2_2 (28σ\sigma), and CO (7σ\sigma). The non-detection of CH4_4, combined with a strong CO2_2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4μ\mum is best explained by SO2_2 (2.7σ\sigma), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.Comment: 41 pages, 4 main figures, 10 extended data figures, 4 tables. Under review in Natur

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')1-3, and thus the formation processes of the primary atmospheres of hot gas giants4-6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7-9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10-12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with&nbsp;JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0-5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H

    Full text link
    Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet's chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R∼\sim600) transmission spectrum of an exoplanet atmosphere between 3-5 μ\mum covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2_2 (28.5σ\sigma) and H2_2O (21.5σ\sigma), and identify SO2_2 as the source of absorption at 4.1 μ\mum (4.8σ\sigma). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2_2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Comment: 44 pages, 11 figures, 3 tables. Resubmitted after revision to Natur

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    Full text link
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution, and high precision that, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0 - 4.0 μ\mum, exhibit minimal systematics, and reveal well-defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous H2_2O in the atmosphere and place an upper limit on the abundance of CH4_4. The otherwise prominent CO2_2 feature at 2.8 μ\mum is largely masked by H2_2O. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100×\times solar (i.e., an enrichment of elements heavier than helium relative to the Sun) and a sub-stellar carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte
    corecore