5,217 research outputs found

    Quasi One-Dimensional Photonic Crystals as Building Block for Compact Integrated Optical Refractometric Sensors

    Get PDF
    A quasi one-dimensional photonic crystal has been fabricated and the applicability of this strong grating for optical sensing has been investigated by measuring the transmission spectra as a function of the cladding refractive index. The cladding index was varied a small range. By monitoring the transmitted output power the transmission stop-band was found to shift by 1 nm wavelength for either a cladding refractive index change of 0.05 or a temperature change of 120 K

    Quasi 1-dimensional photonic crystals as building block for compact integrated optical sensors

    Get PDF
    A quasi one-dimensional photonic crystal has been fabricated and the applicability of this kind of structure for optical sensing has been investigated by measuring the transmission spectra as a function of the cladding refractive index. The cladding index was varied using a liquid flow, of which the index was slowly varied over a small range. The shift with cladding index of the steep stop band edge provides a relatively sensitive detection mechanism in an extremely compact device

    Toward an accurate ab initio estimation of compressibility and thermal expansion of diamond in the [0, 3000 K] temperature and [0, 30 GPa] pressures ranges, at the hybrid HF/DFT theoretical level

    Get PDF
    The isothermal bulk modulus, together with its temperature dependence, and the thermal expansion of diamond at various pressures were calculated from first principles in the [0, 30 GPa] and [0, 3000 K] pressure and temperature ranges, within the limits of the quasi-harmonic approximation (QHA). The hybrid HF/DFT functional employed (WC1LYP) proved to be particularly effective in providing a very close agreement between the calculated and the available experimental data. In particular, the bulk modulus at 300 K was estimated to be 444.6 GPa (K' = 3.60); at the same temperature, the (volume) thermal expansion coefficient was 3.19×10-6 K-1. To the authors’ knowledge, among the theoretical papers devoted to the subject, the present one provides the most accurate thermo-elastic data in high-pressure and temperature ranges. Such data can confidently be used in the determination of the pressure of formation using the “elastic method” for minerals found as inclusions in diamonds (recently applied on different minerals included in diamonds), thus shedding light upon the genesis of diamonds in the Earth’s upper mantle

    Size-dependent resistivity in a micro-processed YBa2Cu3O7-ÎŽ superconducting whisker

    Get PDF
    We report the results of a detailed geometrical and electrical study which has been performed on a YBa2Cu3O7-Ύ superconducting whisker. This sample has undergone three subsequent steps of micro-machining by means of a focused ion beam (FIB) instrument, in order to progressively decrease its cross-sectional area from ~77 to ~4 ”m2, over a length of about 150 ”m. A simple analytical model based on the exact shape both of the electrical contacts and of the micro-machined material has been proposed for the voltage drop; besides, an accurate geometrical characterization of all of the sample details has been performed by means of SEM microscopy. This enabled us to extract accurate electrical resistivity curves from the resistance versus temperature characteristics for each of the fabrication steps of the whisker, showing an increase of the sheet resistivity with decreasing cross-sectional area. Among the possible physical reasons for such behaviour, inelastic electron scattering at the sample surfaces has been ruled out because of the very short mean free path of carriers in YBCO. On the other hand, oxygen out-diffusion and Ga ion implantation due to the FIB processing are most likely to be responsible for the observed resistivity trend

    The (100), (111) and (110) surfaces of diamond: an ab initio B3LYP study

    Get PDF
    We present an accurate ab initio study of the structure and surface energy of the low-index (100),(111) and (110) diamond faces, by using the hybrid Hartree-Fock/Density Functional B3LYPHamiltonian and a localized all-electron Gaussian-type basis set. A 2D periodic slab model has been adopted, for which convergence on both structural and energetic parameters has been thoroughly investigated. For all the three surfaces, possible relaxations and reconstructions have been considered; a detailed geometrical characterization is provided for the most stable structure of each orientation. Surface energy is discussed for all the investigated faces

    Structure, Stability, and (Non)Reactivity of the Low-Index Surfaces of Crystalline B2O3−I

    Get PDF
    Diboron trioxide (B2O 3) assumes critical importance as an effective oxidation inhibitor in prominent chemical applications. For instance, it has been extensively used in electrolysis and ceramic/glass technology. Results are presented of accurate quantum mechanical calculations using the PW1PW hybrid HF/DFT functional of four low- index surfaces of the low-pressure phase of B2O : (101), (100), (011), and (001). Bond lengths, bond angles, and net Mulliken charges of the surface atoms are analyzed in detail. Total and projected density of states as well as surface energies are discussed. The occurrence of tetrahedral BO 4 units on the lowest energy structures of two of these surfaces has been demonstrated for the first time. The corresponding surface orientations incur larger energies in reference to the two orientations featuring only BO3 units. All of the four investigated lowest energy structures have no dangling bonds, which reasonably relates to the experimentally observed low reactivity of this compound. Findings in this paper pave the way for potential interest in the perspective of future studies on the surfaces of amorphous B2O3, as well as on the hydroxylation of both crystalline and amorphous B2O3

    Surface machining of Ti6Al4V by means of Micro-Electrical Discharging to improve adhesive joining

    Get PDF
    The Micro-Electrical Discharge Machining (Micro-EDM) technique has been employed to machine micro-patterns with shaped micro-slots on Ti6Al4V surfaces. Ti6Al4V substrates, with and without micro-slots, were bonded using a commercial epoxy adhesive. Optical microscopy and SEM were used to observe the micro-patterned Ti6Al4V surfaces before and after joining and to analyse the fracture surfaces after mechanical tests. The joints were mechanically characterised, with and without micro-patterns, by means of Single Lap Offset (SLO) shear tests under compression to understand the effect of differently shaped micro-slots. The effects of the shape of the micro-slots, their interlocking or overlapping, and their orientation, with respect to the applied load, are presented and discussed in terms of mechanical performance of the joints

    Electronic structure, dielectric properties and infrared vibrational spectrum of fayalite: An ab initio simulation with an all-electron Gaussian basis set and the B3LYP functional

    Get PDF
    The electronic structure, the static and high frequency dielectric tensors, and the infrared (IR) spectrum of fayalite Fe2SiO4, the Fe-rich end-member of olivine solid solutions, are explored at an ab initio quantum mechanical level, by using an all-electron Gaussian type basis set, the B3LYP hybrid DFT functional, and the CRYSTAL09 code. Mulliken population analysis and spin density maps illustrate the electronic structure, characterized by a nearly pure d6, high-spin configuration of the transition metal atom. The full set of IR wavenumbers and intensities is computed. The availability of highly accurate synchrotron radiation data (Suto et al., Astron Astrophys 2002, 389, 568) permits a very accurate comparison between simulated and measured quantities, in primis wavenumbers (Îœ) and oscillator strengths (f). The mean absolute difference ∆v is as small as 4 cm−1, and the maximum absolute difference |ΔΜmax| never exceeds 12 cm−1, whereas the summed absolute difference ΔF between fexp and fcalc is around 10%. Modes not detected in the experiment turn out to be (i) characterized by low computed intensity, or (ii) very close to a large intense peak. Computed and experimental IR reflectance curves are in striking agreement also. The nature of the vibrational modes is investigated by means of isotopic substitutions, which clarify the participation of the various atomic species to each mode

    Polynomial growth of volume of balls for zero-entropy geodesic systems

    Full text link
    The aim of this paper is to state and prove polynomial analogues of the classical Manning inequality relating the topological entropy of a geodesic flow with the growth rate of the volume of balls in the universal covering. To this aim we use two numerical conjugacy invariants, the {\em strong polynomial entropy hpolh_{pol}} and the {\em weak polynomial entropy hpol∗h_{pol}^*}. Both are infinite when the topological entropy is positive and they satisfy hpol∗≀hpolh_{pol}^*\leq h_{pol}. We first prove that the growth rate of the volume of balls is bounded above by means of the strong polynomial entropy and we show that for the flat torus this inequality becomes an equality. We then study the explicit example of the torus of revolution for which we can give an exact asymptotic equivalent of the growth rate of volume of balls, which we relate to the weak polynomial entropy.Comment: 22 page
    • 

    corecore