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Abstract

The electronicstructure, the static and high frequency dielectric tensors and the in-

frared spectrum of fayalite Fe2SiO4, the Fe-rich end-member of olivine solid solu-

tions, are explored at anab initio quantum mechanical level, by using an all-electron

Gaussian type basis set, the B3LYP hybrid DFT functional and the CRYSTAL09 code.

Mulliken population analysis and spin density maps illustrate the electronic structure,

characterized by a nearly pure d6, high-spin configuration of the transition metal atom.

The full set of IR wavenumbers and intensities is computed. The availability of highly

accurate synchrotron radiation data (Suto et al. (2002)A&A, 389:568) permits a very

accurate comparison between simulated and measured quantities, in primis wavenum-

bers (ν) and oscillator strengths (f ). The mean absolute difference|∆ν| is as small as

4 cm−1, and the maximum absolute difference|∆νmax| never exceeds 12 cm−1, whereas

the summed absolute difference∆F betweenf exp and f calc is around 10%. Modes not

detected in the experiment turn out to be (i) characterized by low computed intensity,

or (ii) very close to a large intense peak. Computed and experimental IR reflectance

curves are in striking agreement, too. The nature of the vibrational modes is investi-
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gated by means of isotopic substitutions, which clarify theparticipation of the various

atomic species to each mode.

1. Introduction

Olivines are important rock-forming silicates, as they belong to the most abundant

phases of the Earth’s crust and upper mantle [1]; they represent a relevant component

of interplanetary and interstellar solid particles [2], too.

Olivine solid solutions and the two pure end-members, Mg2SiO4 forsterite and Fe2SiO4

fayalite, have been the subject of many experimental investigations concerning their

crystallographic [3, 4, 5], thermodynamic [5, 6] and spectroscopic properties. Con-

cerning this last aspect, transmission, reflection and absorption infrared spectra have

been collected over the years [5, 7, 8, 9, 10, 11, 12, 13]; the characterization of the

spectrum is however not complete, probably due to degeneracies, low intensity of some

fundamentals, and presence of overtones in the fundamentalregion.

This class of compounds represents a stimulating case studyfor modern periodic

quantum mechanical codes, due to the relatively large unit cell (28 atoms), high sym-

metry, presence of transition metal atoms. In a previous work by some of the present

authors [14], IR and Raman active modes of forsterite, i.e. the Mg-rich end-member,

were investigated at theab initio level. The agreement with the available experimental

data was excellent.

In the present paper, we extend our investigation to the other end-member, fayalite,

whose Fe2+ ion in d6, high-spin configuration is responsible for a Jahn-Teller distortion

of the octahedral site, requiring a fine modeling of the electronic density. The compar-

ison of the IR spectrum with experiments is particularly significant for this compound,

thanks to the availability of accurate reflectance spectra,obtained by using the Japanese

infrared beamline of the synchrotron radiation facility SPring8 [12].

Recently implemented computational tools are applied in this study, allowing a com-

plete characterization of the vibrational properties, beyond the simulation of the full

set of infrared frequencies: the CPHF/KS method for the calculation of the optical

dielectric tensor [15, 16], the Berry Phase scheme to compute IR intensities [17], the
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automated construction of the reflectance spectrum for the all the crystallographic di-

rections, according to a classical damped harmonic oscillator model, directly from the

parameters obtained at theab initio level [18]. Additional information include the char-

acterization of the Fe ions spin state and the analysis of thenature of the vibrational

modes in the different spectral regions (the latter by means of isotopic substitution and

graphical animation of the modes).

To the authors’ knowledge this is the firstab initio calculation of the vibrational proper-

ties of fayalite: previousab initio studies were limited to the discussion of the structural

and ground-state electronic properties either at ambient conditions or at high pressures

[19, 20, 21].

The paper is structured as follows: Section 2 deals with the adopted computa-

tional method; in Section 3 results are reported and commented for the structure, the

electronic configuration and the infrared properties; Section 4 presents the main con-

clusions.

2. Computational details

Calculations were performed with the CRYSTAL09 periodicab initio code [22],

by using an all-electron Gaussian type basis set and the hybrid B3LYP functional

[23, 24, 25], that has recently been shown to provide excellent results for geome-

try and vibrational frequencies of forsterite [14, 26], superior to those obtained with

LDA or GGA type functionals. Iron, silicon and oxygen have been described by (8s)-

(64111sp)-(411d), (8s)-(6311sp)-(1d) and (8s)-(411sp)-(1d) contractions, respectively;

these basis functions were already used by some of the present authors in previous

works on MgSiO4 forsterite [14, 26] and Fe3Al2(SiO4)3 almandine [18].

The level of accuracy in evaluating the Coulomb and Hartree-Fock exchange series

is controlled by five parameters [22, 27], for which the 7 7 7 8 18 values were used. The

threshold on the SCF energy was set to 10−10 Ha for both the geometry optimisation and

the frequency calculation. The reciprocal space was sampled according to a sublattice

with shrinking factor [22] set to 6 (along the 3 lattice vectors), corresponding to 64

independent~k vectors in the irreducible part of the Brillouin zone.
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The DFT exchange-correlation contribution is evaluated bynumerical integration

over the unit cell volume. In CRYSTAL, radial and angular points of the grid are gener-

ated through Gauss-Legendre radial quadrature and Lebedevtwo-dimensional angular

point distributions. A (75,974)p grid was used, corresponding to a pruned grid with 75

radial and 974 angular points (XLGRID keyword in the CRYSTAL09 manual [22]).

The accuracy in the integration can be estimated by the erroron the integrated elec-

tronic charge density in the unit cell (∆e = 7 · 10−6|e| on a total of 392 electrons).

The structure was optimized by using the analytical energy gradients with respect

to atomic coordinates and unit-cell parameters [28, 29, 30], within a quasi-Newton

scheme combined with the BFGS algorithm for Hessian updating [31, 32, 33, 34].

Convergence was checked on both gradient components and nuclear displacements,

for which the default values [22] are chosen.

The calculation of the TO vibrational frequencies at theΓ point has been per-

formed within the harmonic approximation; the mass-weighted Hessian matrix W is

constructed by numerical differentiation of the analytical gradients with respect to the

atomic cartesian coordinates. The calculated (optimized)equilibrium geometry is taken

as reference. Details on the calculation of vibrational frequencies can be found in Refs.

35 and 36.

The strength of thenth oscillator, fn, is defined as:

fn,i j =
4π
Ω

Z̄n,iZ̄n, j

ν2n
, (1)

whereΩ is the unit cell volume,i and j indicate the three Cartesian components,νn is

the frequency of thenth mode and

Z̄n,i =
∑

A, j

tn,A jZ
∗
A,i j

1
√

MA
. (2)

Z∗A,i j is the Born effective charge tensor associated with atomA, evaluated through a

Berry phase approach [37, 38, 39];tn,Ai is an element of the eigenvectors matrix T of

the mass-weighted Hessian matrix W, that transforms the cartesian atomic directions

into thenth normal coordinate directions;MA is the mass of atomA.

The ionic components to the static dielectric tensorǫ0,i j are evaluated as the sum of the

oscillator strengths:Fi j =
∑

n fn,i j . The electronic high frequency componentsǫ∞,i j are
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calculated through the Coupled-Perturbed KS/HF (Kohn-Sham/Hartree-Fock) scheme

[15, 16, 40, 41, 42].

Manipulation and visualization of structures have been performed with the Jmol 3D

engine (jmol.sourceforge.net/; www.theochem.unito.it/crystal tuto/mssc2008cd/tutorials/webvib/index.html).

Molecular drawings have been rendered with the Inkscape program (www.inkscape.org)

using input files prepared with Jmol.

2.1. The reflectance spectrum

The reflectance spectrumR(ν) is defined as follows [43]:

R(ν) =

∣

∣

∣

∣

∣

∣

∣

√

ǫ(ν) − sin2(θ) − cos(θ)
√

ǫ(ν) − sin2(θ) + cos(θ)

∣

∣

∣

∣

∣

∣

∣

2

, (3)

whereθ is the incidence angle of the infrared beam; in the present work, we have set

θ = 10◦, according to the experimental setup of our reference work [12].

In the case of orthorhombic systems, the complex dielectricfunction turns out to be

a diagonal tensor, defined according to a classical damped harmonic oscillator model

[43, 44]:

ǫ(ν)ii = ǫ∞,ii +
∑

n

fn,iiν2n
ν2n − ν2 − iνγn

, (4)

whereνn, fn andγn are the TO peak position, the oscillator strength and the damp-

ing factor. The electronic high frequency contributionsǫ∞,ii are almost constant with

respect to frequency in the IR range, as electronic transition energies are very large

compared to IR transition energies.

A microscopic approach to the calculation of the dielectricfunction permits to write

[44, 45, 46]:

ǫ(ν)ii = ǫ∞,ii +
4π
Ω

∑

n

Z
2
n,i

ν2n − ν2 − iνγn
, (5)

where the definition of the oscillator strengthfn,ii according to eq. 1 has been used.

As the harmonic model is used in our simulation, we are unableto compute theγj

damping factors. As a reasonable choice [17, 47, 48], all of them have been set equal

to 9 cm−1, theγexp mean value of the experimentalγexp
n data.

From the experimentalists’ point of view [12], the digitalized Rexp(ν) function,

through eq. 3 and 4, provides by best fit the “experimental” values forνn, fn andγn. In
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the present case, 10, 10 and 7 experimental IR peaks were identified for thex, y, andz

directions, respectively; then the fitting function contains 30, 30 and 21 parameters.

The comparison among theory and experiment can be performedboth at theR(ν) level,

or by comparing calculated and measuredνn and fn.

3. Results

3.1. Structure

The crystal structure of fayalite (see Figure 1) is built up by SiO4 and FeO6 distorted

tetrahedra and octahedra, respectively. Si polyhedra share vertices with the Fe ones, but

not with each other. There are two symmetry-independent Fe atoms, named Fe1 (on

the inversion centre at 0,0,0) and Fe2 [4]. The Fe1 octahedrashare edges forming rods

parallel to the crystallographicc axis, and the Fe2 octahedra are linked laterally to these

rods by edge-sharing, too.

The calculated equilibrium geometry, given in Table 1, is ingood agreement with

experiment [4]. Cell parameters are slightly overestimated (largest deviation: 1.5% for

a), as usual for B3LYP. Cell parameters computed by Ref. 19, also shown in Table 1,

are largely overestimated (a), in good agreement (b) and slightly underestimated (c).

Compensation among these non systematic errors with respect to experiment leads to

a fortuitous good agreement with the experimental volume.

The experimental Si-O and Fe-O distances are well reproduced (the largest difference

is smaller than 0.04 Å). The Si tetrahedron turns out to be almost regular, in agreement

with experiments. Larger distortions are shown by the Fe octahedra, as indicated by

the cation-oxygen (Fe-O) distances, whose values span over0.26 Å (2.08÷2.34 Å); this

is an evidence of the Jahn-Teller distortion of the octahedral sites. As a comparison,

the range of Mg-O distances in the case of the Mg-rich olivineforsterite is restricted to

0.16 Å [14].

3.2. Electronic configuration

Fayalite turns out to be quite ionic (see Table 2). Net charges Q obtained by a

Mulliken population analysis are+1.4 |e| (Fe, the formal charge being+2), +2.0 |e|

(Si), -1.2|e| (O). The Fe-O bond population B is about+0.05|e| (indicating ionic bond),

whereas for the Si-O bond it is five times larger (+0.26|e|, covalent bond).
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The atomic integrated spin density M is given in Table 2, too.M is ± 3.8 |e| (for

“α” Fe and “β” Fe, respectively), very close to the ideal value of a d6, high-spin con-

figuration (± 4 |e|, resulting from 5α and 1β electrons). The high-spin solution is well

known to be more stable than the low-spin one in Fe-containing compounds at ambient

conditions; extremely high pressures are required to induce the transition towards a

low-spin state [49, 50, 51]. The spin maps given in Figure 2 show the lobe structure

of the Fe density resulting from the orientation of the 6th occupied d orbital that breaks

the spherical symmetry of the d5 configuration.

Due to the presence of the Fe ion (in a d6, high-spin configuration), different spin

states are possible; the present work concentrates on the most stable phase, namely

an antiferromagnetic phase (fourα polarized and fourβ polarized Fe ions), where Fe

planes along thex axis show alternating spins (see Figure 1). This implies an an-

tiferromagnetic order between ions at the centre of corner-sharing oxygen octahedra

(Fe-O-Fe angle close to 180◦) and a ferromagnetic order between edge-sharing octahe-

dra (Fe-O-Fe angle of about 90◦). The resulting arrangement is consistent with a Fe-Fe

magnetic interaction via a superexchange mechanism through oxygen p orbitals [19].

The described antiferromagnetic phase is lower in energy than the ferromagnetic one

(eightα polarized Fe ions) by 5.5 mHa (14.4 kJ/mol) per unit cell.

A small spin polarization appears on oxygen atoms, which is responsible for the trans-

mission of the magnetic information from one transition metal to the other, and for

the energy difference among the stable antiferromagnetic (AFM) and the ferromag-

netic (FM) phases. This mechanism is evident when comparingthe FM (Figure 2(a))

and the AFM (Figure 2(b)) spin maps, showing the different oxygen polarization for

the two cases; let us refer to the set of nearly collinear atoms Fe1 “A” - O - Fe2 “B”.

The spin density on O is higher in the FM case, where the presence of neighboring

Fe ions with the same spin (say “α”) constrains theα electrons of O to pile up close

to the atomic nucleus. In the AFM case, the opposite polarization of neighboring Fe

ions permits O to displaceα andβ electrons in opposite directions, with a consequent

lower energy. The M values for the O atom under study are+0.10 and+0.01|e|, for the

FM and AFM phases, respectively (“O3” oxygen in Table 2), documenting the reduced

spin polarization on the O atoms in the AFM phase with respectto the FM one.
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3.3. Infrared modes: wavenumbers and intensities

Fayalite, as all olivines, is orthorhombic (space groupPbnm, n. 62). There are 28

atoms (4 formula units) in the unit-cell, 6 of which symmetryindependent, giving rise

to 84 vibrational modes. Symmetry analysis shows that:

Γtotal = 11Ag ⊕ 11B1g ⊕ 7B2g ⊕ 7B3g ⊕ 10Au ⊕ 10B1u ⊕ 14B2u ⊕ 14B3u. (6)

A total of 35 IR active modes (9B1u ⊕ 13B2u ⊕ 13B3u) and 36 Raman active modes

(11Ag ⊕ 11B1g ⊕ 7B2g ⊕ 7B3g) is then expected, plus 10Au inactive modes. The three

B1u, B2u andB3u modes left correspond to rigid translations.

In the present study we focus our attention on the 35 IR activemodes, and compare

the obtained results with the experimental ones by Suto and coworkers [12]. The

experimental setup exploited a synchrotron radiation facility, providing high quality

reflectance spectra.

In Tables 3, 4 and 5 the calculated and experimental wavenumbers and oscillator

strengths are reported for the three crystallographic axes. The overall agreement be-

tween the two sets of data is very satisfactory:|∆| for the a, b andc axes is 4.2, 4.3

and 3.2 cm−1, respectively.∆ is 4.0, 4.3 and 2.5 cm−1, indicating a small systematic

overestimation of the calculated frequencies.|∆max| is greater than 10 cm−1 only in

three cases (one per crystal axis), and never exceeds 12 cm−1.

While 35 IR modes are predicted by our computation, only 27 peaks were observed

experimentally. The missing peaks are equally distributedalong the three directions: 3

(modes 1,6,9), 3 (modes 1,7,10) and 2 (modes 1,2) for thea, b andc axes, respectively.

All these peaks correspond to modes with extremely low computed intensity (oscillator

strengthf ≤ 0.01).

We begin our analysis of the oscillator strengths from the comparison of the sums

Fexp =
∑

j f exp
j andFcalc =

∑

j f calc
j . These quantities represent the ionic contribution

to the static dielectric tensor (see Table 6);Fcalc is quite close toFexp, the differences

being -9.8 %, -3.5 % and -1.5 % for thex, y andz components (along thea, b andc

axes, respectively).

When passing fromF to∆F =
∑

j |∆ f j |, that is the sum of the absolute differences (see

Tables 3, 4 and 5), the situation is apparently less satisfactory,∆F being 0.98, 2.09 and
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0.61, that is 20.0 %, 38.3 % and 11.3 % of the correspondingF.

A deeper analysis shows however that the largest contributions to∆F are due to modes

that are very close in frequency, (see lines grouped in columns 6, 8 and 10 of Tables 3

and 4). The one-to-one correspondence between calculated and experimental peaks is

arbitrary in these cases.

For this reason,f belonging to two (or more) frequencies with∆ν ≤ 15 cm−1, or

with ∆ν ≤ 30 cm−1 and fcalc ≥ 0.5, were grouped before comparison among theory

and experiment. In this way we also eliminate a second sourceof discrepancy: when

modes are close in frequency, the deconvolution process of the experimental spectrum

can be affected by large errors, due to the strong correlation betweenthe parameters

describing the intensity of the two close peaks. This is evident in the couples of modes

(2,3) and (4,5) of theb axis, where the differences between experimental and calculated

f have opposite sign (0.34,-0.29 and 0.59,-0.74), and reduceto 0.05 and -0.15 if they

are summed up before comparison.

This strategy reduces∆F in the cases of thea andb axes to 0.66 (13.5 %) and 0.33 (6.1

%), respectively. Overall, also the agreement between experimental and calculatedf is

then excellent.

3.4. Infrared modes: isotopic substitutions

Isotopic substitutions can be used to evaluate the participation of the various atoms

to the vibrational modes in the different regions of the spectrum. In the present case,

four different new spectra have been generated, in which56Fe1 was substituted by

60Fe1,56Fe2 by60Fe2,28Si by 30Si and16O by 17O. The shifts are represented graphi-

cally in Figure 4.

Fe1 shows large isotopic shifts (2÷6 cm−1) in a wide range of wavenumbers, 130÷360

cm−1, whereas only four frequencies in the range 170÷260 cm−1 feature shifts larger

than 2 cm−1 when the Fe2 mass is increased. This result is consistent with the Fe1

octahedra being tightly linked to one another by edge sharing, so as to form rigid [001]

chains (see Figure 1), whereas the Fe2 octahedra are more loosely connected to the

sides of these chains, and thus contribute to the lowest frequency modes only.

Silicon is mainly involved in the high frequency (>850 cm−1) stretching modes and in
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the bending modes around 460÷570 cm−1, with shifts up to 14 and 6 cm−1, respec-

tively. As expected, oxygen is involved in all modes, with anisotopic shift which is

roughly proportional to the mode frequency.

These results are closely similar to the ones presented for forsterite [14]. The main dif-

ference is due to the different mass of the cation in the octahedral position (Fe instead

of Mg): the involved modes extend up to 360 cm−1 here, and to 540 cm−1 in forsterite.

3.5. Dielectric tensors

The experimental values of the components of the high frequency electronic dielec-

tric tensorǫ∞ are 3.55, 3.35 and 3.50 for thea, b andc axes, respectively (see Table 6),

obtained through the best fit analysis of the reflectance curves. The calculated values,

computed by means of a CPKS scheme [15, 16, 40, 41, 42], are 3.26, 3.02 and 3.25,

(-8.9%, -10.9% and -7.7% with respect to experiment).

The static dielectric tensorǫ0 is obtained as the sum of the electronic and ionic

contributions (the latter have been discussed in Section 3.3). Computed components

are 8.15, 8.47 and 8.65, to be compared with the experimentalones, 8.92, 8.99 and

8.82 (the underestimation is 9.4%, 6.1% and 2.0%, respectively).

3.6. Reflectance curves

TheRcalc(ν) functions, computed from the frequencies and intensitiesobtained for

the three axes, and damping factors set toγexp
= 9 cm−1 (see Section 2.1), are shown

in Figure 3 (black lines). In each panel, for comparison, both the instrumentalRexp(ν)

(gray thick line) and fittedRf it (ν) (black dotted line, constructed from the fitted param-

eters) experimental spectra are included [12].

The experimental spectra turn out to be reproduced extremely well by our simulated

data for all the three axes, with the only exceptions of the doublets below 200 cm−1

in the case ofa andb axes. This discrepancy, as other smaller discrepancies in am-

plitude along the three spectra, is mainly due to the use of a unique mean valueγexp

for all modes [17, 47, 48]. The root mean square RMS between the instrumental and

the fitted/computed reflectance curves gives a quantitative indication of the quality of

the spectra. In the case ofRf it the RMS values are 0.018, 0.016 and 0.013 for thea,

b andc axes, respectively, while in the case ofRcalc the RMS values are 0.086, 0.081
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and 0.081. When comparing the three axes among them, the quality of the computed

curves is very similar. It is worth noting that for all the axes Rcalc shows RMS values

of the same order of magnitude asRf it .

4. Conclusions

The IR spectrum of fayalite was calculated by usingab initio techniques and com-

pared to high quality experimental data. The comparison involves 27 wavenumbers

and oscillator strengths, showing that:

(a) When high-quality experimental and calculated data are available, very good

agreement can be achieved, and a very detailed description of vibrational prop-

erties (wavenumbers and oscillator strengths) can be provided;

(b) Factors that can reduce the accuracy of experiment (quality of the sample, exper-

imental setup, accuracy of the deconvolution processes) orsimulation (approxi-

mation of the Hamiltonian, finite basis set) are different, and a cross comparison

can eliminate (or ”filter”) anomalous behaviours;

(c) Simulation integrates the experimental data, as it provides the complete set of

infrared modes; in this respect, it confirms that a fraction of symmetry allowed

modes does not appear in the experimental spectrum due to their low intensity;

(d) Simulation helps in the interpretation of the experimental spectrum, as it allows

a detailed and objective analysis of the nature of the infrared modes: Fe- and

SiO4- related peaks are identified.
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Figure 1: Perspective view of the crystal structure of fayalite, Fe2SiO4. SiO4 tetrahedra (light brown) and
FeO6 octahedra corresponding to the two independent Fe1 (brown)and Fe2 (dark brown) atoms, are empha-
sized. Fe1 and Fe2 ions at the centre of the octahedra marked as“A” and “B”, respectively, are represented
in the spin density maps of Figure 2, too.

(a) FM (031) plane

(b) AFM (031) plane

Figure 2: Spin density maps, on the (031) plane, of the Fe ions in the ferromagnetic (FM) and antiferromag-
netic (AFM) phases of fayalite. For sake of clarity, Fe1 and Fe2 ions marked as “A” and “B”, respectively,
have been highlighted in Figure 1, too (see Section 3.2 for more details). Thick segments represent chem-
ical bonds lying on the selected plane. 10 iso-density linesare reported, withρmin = 0.01, ρmax = 0.1,
δρ = 0.01 |e|/bohr3. Continuous, dashed and dot-dashed isolines indicate positive, negative and null density,
respectively.
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Figure 3: Calculated and experimental reflectance spectra for a, b andc axes of fayalite. Computed curves
are obtained by using a damping factor equal to 9cm−1. Experimental curves are a courtesy of Prof. Suto.
Experimental fitted curves are taken from Ref. 12.
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(a) 56Fe1 substituted by60Fe1 (b) 56Fe2 substituted by60Fe2

(c) 28Si substituted by30Si (d) 16O substituted by17O

Figure 4: Effect of the isotopic substitution in fayalite: isotopic shift (∆ν, cm−1) for all the IR frequencies.
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Our work Cococcionia Exp.b

a 4.8913 4.9531 4.822
b 10.5684 10.4671 10.488
c 6.1565 5.9744 6.094
Vol. 318.25 309.74 308.19
Si-Omin 1.640 1.651 1.625
Si-Omax 1.669 1.687 1.649
Fe1-Omin 2.144 2.153 2.121
Fe1-Omax 2.260 2.216 2.230
Fe2-Omin 2.079 2.046 2.079
Fe2-Omax 2.337 2.290 2.292

Table 1: Calculated and experimental geometry of fayalite (Pbnmspace group, 28 atoms in the unit cell, 6 of
which symmetry independent).a, b andc are the cell parameters. The maximum (max) and minimum (min)
Si-O and Fe-O bond distances are reported. Distances are in Å, volumes in Å3. aRef. 19.bRef. 4.

Fe1 Fe2 Si O1 O2 O3

FM

Q +1.355 +1.426 +1.981 -1.163 -1.216 -1.192
B +0.042 +0.054 +0.259 -0.020 -0.034 -0.034
M +3.774 +3.799 +0.025 +0.095 +0.109 +0.099
d 2.144 2.079 1.640 2.744 2.597 2.597

AFM

Q +1.352 +1.422 +1.980 -1.163 -1.213 -1.189
B +0.042 +0.055 +0.259 -0.020 -0.034 -0.034
M ±3.763 ±3.782 ±0.002 ±0.094 ∓0.048 ±0.012
d 2.144 2.079 1.640 2.744 2.597 2.597

Table 2: Mulliken population analysis of ferromagnetic (FM)and antiferromagnetic (AFM) phases of fay-
alite. Note that two and three symmetry independent atoms are present in the unit cell, in the case of Fe and
O atomic species, respectively. Q is the net atomic charge, B the bond population (with respect to the closest
oxygen atom), M the atomic spin moment; all these quantities are in |e| units. d are the distances with respect
to the closest oxygen atom (in Å). Note that, in the AFM phase,lower symmetry results in a doubled set of
independent atoms, featuring opposite M values.
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Axis a
νcalc νexp

a ∆ν fcalc fexp
a ∆ f

1 146.0 – – 0.00 – –
2 178.8 175.6 3.2 0.32} 0.39

0.16}0.46
0.16}-0.073 181.6 181.5 0.1 0.07 0.30 -0.23

4 227.6 220.5 7.1 0.04 0.10 -0.06
5 299.1 291.5 7.5 2.79 3.10 -0.31
6 332.0 – – 0.00 – –
7 359.7 353.1 6.6 0.36 0.35 0.01
8 464.2 460.8 3.3 0.02 0.01 0.01
9 505.2 – – 0.01 – –
10 546.7 545.6 1.2 0.68 0.73 -0.05
11 829.2 829.9 -0.7 0.05 0.03 0.02
12 914.1 913.2 0.9 0.37 0.32 0.05
13 950.9 939.8 11.1 0.19 0.27 -0.08
F [∆F] 4.89 5.37 [0.98] [0.66]

|∆| 4.2 0.10 (0.07)

∆ 4.0 -0.05 (-0.05)

|∆max| 11.1 0.31 (0.31)

N 10 10 (9)

Table 3: Calculated (B3LYP) and experimental IR active vibrational frequenciesν (cm−1) and oscillator
strengthsf (adimensional) along thea axis (B2u symmetry) of fayalite. ∆ν and∆ f are the differences
between experimental and calculated quantities.F =

∑

j f j is the sum of the oscillator strengths,∆F =
∑

j |∆ f j | is the sum of the absolute differences between experimental and calculated oscillator strengths.

Statistical indices (x is eitherν or f ): |∆| =
∑N

i=1 |∆xi |/N is the mean absolute difference,∆ =
∑N

i=1∆xi/N
is the mean difference,|∆max| is the maximum difference,N is the number of available experimental data,
on which statistics are performed. Oscillator strengths aregrouped either when the corresponding calculated
frequencies differ (δν) by less than 15 cm−1, or whenδν ≤ 30 cm−1 and fcalc ≥ 0.5. aRef. 12.
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Axis b
νcalc νexp

a ∆ν fcalc fexp
a ∆ f

1 106.7 – – 0.01 – –
2 175.5 172.0 3.5 0.64} 1.14

0.30} 1.09
0.34} 0.053 184.5 179.1 5.3 0.50 0.79 -0.29

4 254.5 254.5 0.0 1.57} 3.08
0.98} 3.23

0.59} -0.155 279.4 272.0 7.4 1.51 2.25 -0.74
6 339.1 332.1 7.0 0.14 0.14 0.00
7 363.2 – – 0.01 – –
8 476.5 465.5 11.0 0.40 0.40 0.00
9 502.5 500.5 2.0 0.18 0.24 -0.06
10 569.6 – – 0.01 – –
11 827.7 826.4 1.2 0.09 0.12 -0.03
12 860.6 858.4 2.2 0.36 0.39 -0.03
13 945.0 941.6 3.4 0.04 0.03 0.01
F [∆F] 5.45 5.64 [2.09] [0.33]

|∆| 4.3 0.21 (0.04)

∆ 4.3 -0.02 (-0.03)

|∆max| 11.0 0.74 (0.15)

N 10 10 (8)

Table 4: Calculated and experimental IR active vibrational frequencies and oscillator strengths along theb
axis (B3u symmetry). Symbols and units as in Table 3.aRef. 12.

Axis c
νcalc νexp

a ∆ν fcalc fexp
a ∆ f

1 130.0 – – 0.00 – –
2 163.9 – – 0.00 – –
3 194.1 195.4 -1.3 0.85 0.63 0.22
4 253.7 251.4 2.4 0.27 0.20 0.07
5 302.0 302.7 -0.7 2.45 2.58 -0.13
6 370.7 371.2 -0.5 0.41 0.37 0.04
7 449.6 447.0 2.6 0.08 0.16 -0.08
8 469.8 466.4 3.4 0.66 0.64 0.02
9 870.9 859.1 11.8 0.68 0.74 -0.06
F [∆F] 5.40 5.32 [0.61]
|∆| 3.2 0.09
∆ 2.5 0.01
|∆max| 11.8 0.22
N 7 7

Table 5: Calculated and experimental IR active vibrational frequencies and oscillator strengths along thec
axis (B1u symmetry). Symbols and units as in Table 3.aRef. 12.

ǫ0 ǫ∞ F
Calc. Exp.a Calc. Exp.a Calc. Exp.a

x 8.15 8.92 3.26 3.55 4.89 5.37
y 8.47 8.99 3.02 3.35 5.45 5.64
z 8.65 8.82 3.25 3.50 5.40 5.32

Table 6: Calculated and experimental static dielectric tensor (ǫ0) and its components: the electronic high
frequency (ǫ∞) and the ionic one, evaluated as the sum of the oscillator strengths (F =

∑

j f j ). aRef. 12;
experimental values obtained through a fitting procedure. The three cartesian directions correspond to the
crystallographic ones, so that the dielectric tensor turnsout to be diagonal.
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