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ABSTRACT 12 

The volume bulk modulus, together with its temperature dependence, and the thermal expansion of 13 

diamond at various pressures, were calculated from first principles in the [0, 30GPa] and [0, 3000K] 14 

pressure and temperature ranges. The hybrid HF/DFT functional employed (WC1LYP) proved to be 15 

particularly effective in providing a very close agreement between the calculated and the available 16 

experimental data. In particular, the bulk modulus at 300K was estimated to be 444.6 GPa (K’ = 3.60); 17 

at the same temperature, the (volume) thermal expansion coefficient was 3.19·10-6 K-1. To the 18 

authors’ knowledge, among the theoretical papers devoted to the subject, the present one provides 19 

the most accurate thermo-elastic data in high pressure and temperature ranges. Such data can 20 

confidently be used in the determination of the pressure of formation using the “elastic method” for 21 

minerals found as inclusions in diamonds, thus shading light upon the genesis of diamonds in the 22 

Earth’s upper mantle.     23 
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INTRODUCTION 26 

This work is part of a wider project devoted to the study of diamonds formation in the upper mantle 27 

and its growth relationships with those minerals that are commonly found as inclusions in diamonds. 28 

In particular, subcratonic diamonds can contain inclusions of other minerals like olivine, garnet, 29 

spinel, pyroxenes, sulfides (Nestola et al. 2011; Shirey et al. 2013). Diamonds and their inclusions are 30 

among the deepest materials originating from the Earth's interior and reaching the planet surface. 31 

Their study plays a key role in understanding and interpreting the geodynamics, geophysics, 32 

petrology, geochemistry and mineralogy of the Earth's mantle (Stachel and Harris 2008, and 33 

references therein). By the study of such inclusions, in situ, by means of diffrattometric or 34 

spectroscopic techniques, it is possible to determine the pressure (and the corresponding depth in the 35 

Earth’s mantle) at which the inclusions were formed (Nestola et al. 2011; Izraeli et al. 1999) using the 36 

so called “elastic method” (see Shirey et al. 2013 for a review). However, to this end, very accurate 37 

data concerning the pressure-volume equation of state, the thermal expansion and the bulk modulus 38 

temperature dependence of both diamond and its inclusions are absolutely crucial in order to obtain 39 

low error in the pressure of formation.          40 

As concerns diamond, previous experimental and theoretical determinations of the elastic parameters 41 

and thermal expansion existed. In particular, from the experimental side, the elastic constants 42 

measurements from Brillouin scattering, at room or higher temperatures, allowed the estimation of 43 

the bulk modulus and its temperature dependence (Grimsditch and Ramdas 1975; McSkimin and 44 

Andreatch 1972; Vogelgesang et al. 1996; Zouboulis et al. 1998).  Experimental thermal expansion 45 

data (from low to high temperature up to 3000K) at room pressure, are available from Stoupin and 46 

Shvyd’ko (2011), and from Reeber and Wang (1996). Due to technical difficulties in the experimental 47 
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determinations of accurate bulk moduli and thermal expansion at simultaneous high pressure and 48 

temperature, a number of theoretical works were devoted to the subject, both at the ab initio level 49 

(Hebbache 1999;  Kunc et al. 2003; Ivanova and Mavrin 2013; Maezono et al. 2007; Mounet and 50 

Marzari 2005; Valdez et al. 2012; Xie et al. 1999; Zhi-Jian et al. 2009) or the empirical one (force fields 51 

and other techniques based on some specific models; Aguado and Baonza 2006; Gao et al. 2006). 52 

Strongly depending upon the specific method employed, the calculated bulk moduli could be 53 

overestimated or underestimated by more than 10 GPa with respect to the experimental datum at 54 

300K, so that a more reliable ab initio methodology is required to get values which could parallel the 55 

experimental techniques in accuracy and under very extreme conditions of P and T. To this end, the 56 

equation of state and the thermal expansion of diamond in the [0, 3000K] and [0, 30GPa] 57 

temperature and pressure ranges, respectively, have been determined by using the most recent ab 58 

initio techniques so far developed. In particular, an hybrid Hartree-Fock/Density Functional Theory 59 

(HF/DFT) functional has been employed. Hybrid functionals assure a very high accuracy in reproducing 60 

thermo-elastic parameters and vibrational properties of crystals, as it has already been proven in 61 

several papers (see for instance: De La Pierre et al. 2011a, Prencipe et al. 2011; Ungureanu et al. 62 

2012; Zucchini et al. 2012; Scanavino et al. 2012; Prencipe et al. 2012a; Prencipe et al. 2012b, 63 

Scanavino and Prencipe 2013, and references therein).     64 

              65 

COMPUTATIONAL DETAILS 66 

Geometry optimization (cell parameter at the equilibrium), energy calculations at the static limit (no 67 

zero point and thermal energies) and vibrational frequencies calculations, for a set of different unit 68 
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cell volumes, were performed by means of the CRYSTAL09 program (Dovesi et al. 2005; Dovesi et al. 69 

2009). The chosen functional (WC1LYP) is a hybrid HF/DFT one, based on the WC (GGA) exchange 70 

functional proposed by Wu and Cohen (Wu and Cohen 2006), mixed with 16% of the exact non-local 71 

Hartree-Fock exchange, and employing the LYP correlation functional (Lee et al. 1988). Such 72 

percentage of exact Hartree-Fock exchange is essential for the correct reproduction of the elastic and 73 

vibrational properties of crystals, as demonstrated in previous works that had employed this 74 

functional (De La Pierre et al. 2011a; Demichelis et al. 2010; Prencipe et al. 2011; Prencipe 2012a; 75 

Prencipe et al. 2012b; Scanavino et al. 2012; Scanavino and Prencipe 2013; Ungureanu et al. 2010; 76 

Ungureanu et al. 2012; Zicovich-Wilson et al. 2004). With the purpose of testing and comparing our 77 

results with those reported from other Authors, static calculations were repeated by employing the 78 

B3PW (Becke 1993) and PBE functionals (Perdew et al. 1996). As the localized basis sets are 79 

concerned, a 6-111G* basis (B1 in the following), derived from the 6-21G* one by Dovesi et al. (1990) 80 

was mainly employed for the calculation of the zero point and thermal pressure contributions (see 81 

below), where the computational cost of the proper evaluation of dispersion effects in the phonon 82 

spectrum prevented us from the use of a very rich basis set. A very high quality basis set (B2 in the 83 

following), precisely a triple-zeta (TPZ) basis by Peintinger et al. (2013) having the (6211/411/1) 84 

structure, specifically designed for solid state calculations, was employed for the static equation of 85 

state (see below). Such basis is the one indicated as pob-TZVP basis in Table 2 of Peintinger et al. 86 

(2013); the notation to specify the basis indicates the number of contracted functions (s/p/d). To get 87 

more variational freedom and a better description of directional bonding situations like those in 88 

diamond, a B1’ basis (6111/111/1) was also employed where, as in the case of the B2 basis and at 89 

variance with the B1 one, the ns and np electrons (n>2) were associated with different Gaussian 90 
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functions describing the radial part of the localized orbitals. More details about the procedure which 91 

has been followed to calculate energies and vibrational frequencies, and the computational 92 

parameters employed are provided in the Appendix. Static energies and vibrational frequencies at the 93 

different cell volumes are provided as supplementary material. 94 

At each cell volume, the static, zero point and thermal pressure were computed following the 95 

algorithms fully described in Prencipe et al. (2011). The procedures to estimate the bulk modulus 96 

together with its pressure and temperature dependence, and the thermal expansion are also 97 

reported in Prencipe et al. (2011).  98 

 99 

RESULTS AND DISCUSSION 100 

Equation of State 101 

The discussion concerning the estimation of the equation of state (EoS) is here divided in two parts. 102 

The first one is devoted to the static EoS where the only contribution to the pressure at any given cell 103 

volume is from the electrostatic interactions among nuclei and electrons (no zero point and kinetic 104 

contributions from the vibrational motion of the atomic nuclei); the second part is devoted to the 105 

thermal equation of state where all of the contributions to the pressure are taken into account. As 106 

results for the static part are significantly dependent upon the quality of the basis set (see above the 107 

computational details section), at variance with those concerning the zero point and thermal pressure 108 

contributions,  as it will be shown below, such separated discussion makes the issues clearer. 109 

 110 

 111 
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Static Equation of State 112 

The parameters obtained from a volume-integrated third-order Birch-Murnaghan (BM3) fitting of the 113 

static energies, calculated with the two different B1 and B2 basis sets, are reported in Table 1. With 114 

respect to the B2 basis, the B1 basis set significantly overestimates the static equilibrium cell volume 115 

and underestimates the static bulk modulus. The particularly high sensitivity of the static bulk 116 

modulus of diamond to the basis set quality was also noted by De La Pierre (2011): indeed, low quality 117 

basis sets gave lower values of the static bulk modulus than those obtained with higher quality bases 118 

(De La Pierre 2011b). The B1’ basis set differs from the B1 one by having a different description of the 119 

s and p orbitals (by contrast, in B1, s and p electrons are described by sp shells; see above the 120 

Computational details section); this should allow a better description of the electronic distribution in 121 

the case of systems involving directional bonds, as in diamond. Such split of the s and p electrons has 122 

a small effect on the geometry, but increases the static bulk modulus by about 5 GPa (B1’/WC1LYP 123 

data in Table 1), approaching the value obtained by the B2 basis which also has splitted s and p orbital 124 

descriptions.  125 

Static results from Zhi-Jianet al. (2009) are also reported in Table 1: the localized basis set they 126 

employed (B3) was a 6-21G*and the chosen functionals/Hamiltonians were the B3PW (Becke 1993; 127 

this is an hybrid Hamiltonian containing 20% of the exact, non local HF exchange), and the Hartree-128 

Fock (RHF) one. As K0,st is concerned, B3PW gave results comparable to those from WC1LYP, whereas 129 

the RHF datum is largely overestimated, as it could be expected on the basis of the widely known 130 

behavior of the Hartree-Fock Hamiltonian (see for instance Prencipe and Nestola 2005). Calculations 131 

of the static bulk moduli with our B1 and B2 basis sets, and the B3PW functional (as in the work by 132 

Zhi-Jian et al. 2009), gave values of 460.3 GPa (B1/B3PW) and 476.3 GPa (B2/B3PW data in Table 1), 133 
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which are to be compared with the B1/WC1LYP and B2/WC1LYP calculations (same bases, different 134 

functionals) respectively giving K0,st=445.0 and 456.4 GPa, thus showing the significant effect of the 135 

DFT functional on such calculated elastic parameter. The increase in K0,st, and the reduction of V0,st in 136 

passing from the WC1LYP to the B3PW functional is likely due to the corresponding increase of the 137 

Hartree-Fock weight in the exchange functional (16% in WC1LYP, 20% in B3PW), as it was already 138 

observed in Prencipe and Nestola (2005) in a study of the compressibility of a silicate (beryl) by means 139 

of functionals based on a B3LYP scheme, having increasingly higher HF exchange contributions.  140 

Another paper is that from Hebbache (1999), reporting a value of 463.1 GPa for the static bulk 141 

modulus, calculated at the DFT-LDA level. A static calculation of K0 by means of a purely DFT-GGA 142 

functional (PBE; Perdew et al. 1996), together with a plane-wave basis set and pseudopotentials, was 143 

reported by Mounet and Marzari (2005): they found a value of 432 GPa (PW/PBE data in Table 1). For 144 

comparison, in this work a calculation with the B2 basis set and the PBE Hamiltonian gave 444.02 GPa 145 

(B2/PBE data in Table 1); such difference of more than 10 GPa is very likely be attributed to 146 

differences in the basis set structure (plane-waves vs localized basis sets). Although, the quality of the 147 

different basis sets cannot here be judged on the basis of the agreement with the experimental data 148 

as, by definition, no zero point and thermal effects are taken into account at the static level, it is 149 

known (see next section) that such effects do decrease the bulk modulus by up to 10 GPa; in this 150 

view, static bulk moduli which are equal or even smaller than the experimental room temperature 151 

value (442-445GPa; Grimsditch and Ramdas 1975; Zouboulis et al. 1998) will likely be off the 152 

experimental datum by at least 10 GPa. 153 

Smaller effects of both basis sets and Hamiltonians are observed for K’st which is about 3.6. 154 

 155 
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Thermal Equation of State 156 

By adding the static pressures (from the higher quality B2 basis set calculation) to the zero point and 157 

thermal pressures estimated from the vibrational frequencies and their volume derivative (B1 and B2 158 

calculations) of a 2x2x2 supercell of the conventional FCC diamond cell (32 k points of the reciprocal 159 

lattice, 189 normal modes of vibration), the total pressure at a given temperature could be estimated, 160 

for a set of values of the unit cell volume. For any given fixed temperature value, the P(V) data were 161 

fitted by a BM3-EoS, so that the bulk modulus K0T, its pressure derivative K’T and the equilibrium 162 

volume V0T could be estimated. Results are summarized in Table 2 for the two different basis sets, at 163 

the reference temperature of 300K. The significant difference between the bulk moduli estimated by 164 

using the B1 and B2 basis sets (more than 10 GPa, as in the static calculation reported in Table 1) is 165 

due to the differences of the static contributions to the total pressure. Indeed, using the EoS 166 

parameters estimated with the B2 basis set for the static part, together with the frequencies and their 167 

volume derivatives for the vibrational part [in the latter cases, having rescaled by a factor 168 

V0,st(B2)/V0,st(B1) the unit cell volumes at which the vibrational frequencies were calculated, being 169 

V0,st(Bx) the equilibrium static volume optimized by using the Bx basis set; in this way, the frequencies 170 

at any given value of the static pressure for the B1 base were assigned to cell volumes corresponding 171 

to the same static pressure for the B2 base] and fitting the resulting P(V) data, yielded a K0T of 172 

439.0GPa (V0T=45.694 Å3, K’=3.65; B1* data in Table 2), which is only about 0.7GPa higher than the 173 

bulk modulus estimated by using the frequencies calculated with the B2 basis set. This means that, 174 

even if the quality of the basis set had a significant impact on the estimated static elastic parameters, 175 

frequencies calculated with a poorer basis set could confidently be used for the evaluation of the 176 

thermal and zero point contributions to the total pressure.  177 
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The reduced computational cost of the B1 basis set allowed for the calculation of vibrational 178 

frequencies also in the case of larger supercells, thus allowing a more accurate estimation of the 179 

influence of dispersion effects upon the elastic parameters. By employing the B1 basis set, the 180 

calculations of the frequencies were repeated for the 3x3x3 and 1x1x4 supercells, thus reaching a 181 

total of 148 k points having |k|’s in the range [21/2/8 |a*|, |a*|], where |a*| is the module of the 182 

reciprocal lattice parameter, and 885 normal modes. The distribution of the number of modes versus 183 

their frequencies (VDOS: vibrational density of states) is reported in Figure 1, whereas a drawing of 184 

the dispersion curves along the [001]* direction in the reciprocal lattice (Δ path, from the Γ toward 185 

the X point) is shown in Figure 2; the agreement with the experimental data from inelastic neutron 186 

scattering (Warren et al. 1967), which are reported in the inset of Figure 2, is quite satisfactory.  187 

The impact on the bulk modulus of the increasingly larger number of sampled k points, as the 188 

minimum value of |k| is reduced (by enlarging the size of the supercell) moving k toward the Γ point 189 

(B1** data in Table 2; static parameters were from the B2 basis calculations), can be clearly seen in 190 

Figure 3, where K0 is plotted against the minimum value of |k| characterizing each studied supercell 191 

(B1** data in Table 2; static parameters were from the B2 basis calculations): K0 reaches the 192 

convergence with respect to the number of k points when |k| is smaller than about 0.77|a*| 193 

(corresponding to 59 k points sampled). The small variations of K0 with |k|, for |k|<0.77|a*|, allowed 194 

us to derive an uncertainty (precision) of the estimated K0 of about 0.1GPa over an average value 195 

445.4 GPa. However, as discussed above, this datum is likely to be overestimated of almost 1 GPa 196 

with respect to the one that could be derived by using the higher quality B2 basis set for the 197 

calculation of the frequencies. In conclusion, our best estimate of K0 for diamond at 300K was 444.6 198 
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GPa, with an uncertainty (accuracy: mainly due to the basis set bias) of 0.8 GPa. K’ and V0 were 199 

respectively 3.60 and 45.689 Å3 (a0=3.575 Å). 200 

Other ab initio estimations of the bulk modulus were available for diamond. From temperature 201 

dependent elastic constant calculations, Valdez et al. (2012) found a value of 453.54 GPa by using the 202 

purely DFT-LDA functional. Another paper by Xie et al. (1999) was devoted to the ab initio equation of 203 

state of diamond; however they did not report a numerical value of the bulk modulus at 300K, which 204 

had to be inferred from the figure they published (Figure 6 in Xie et al. 1999), where it appeared to be 205 

slightly overestimated with respect to the experimental datum. Nor it was clear the functional they 206 

employed (LDA perhaps); in this case, their results were consistent with those from Valdez et al. 207 

(2012). By employing a GGA-PBE functional (Perdew et al. 1996), Mounet and Marzari (2005) gave a 208 

value of 422 GPa at 300K from a volume-integrated BM4-EoS fit of their E(V) data. It should be 209 

stressed that differences in the evaluated bulk moduli from different authors were due to either the 210 

different DFT functionals employed in each case, or the basis sets, as already discussed above in the 211 

section concerning the static EoS. 212 

Experimental data from measurements of the elastic constants of diamond, at variable temperature, 213 

gave value of 442.3 GPa (Grimsditch and Ramdas 1975) and 444.8 GPa (Zouboulis et al. 1998); in the 214 

latter case, the value of the bulk modulus at 300K was obtained from a fit of K0(T) values measured in 215 

the [300, 1600K] temperature range, according to the function 216 

K0(T)= K0(300K) + BT(T2-3002)       (1) 217 

with K0(300K) = 444.8 GPa and BT = -1.2·10-5GPa/K2. By performing the same fit on our K0(T) B1** 218 

data, we got K0(300K) = 443.9(4) GPa, and BT = -0.96(3)·10-5GPa/K2 (in parentheses are the errors from 219 
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the fit). Even by considering the bias due to the basis set quality (see above), our datum fell very close 220 

and between the two experimental data available.  221 

Isobar curves of the estimated bulk moduli as functions of temperature, in the [0, 2000K] range, are 222 

reported in Figure 4, for pressures of 0, 10, 20 and 30 GPa; as it can been seen from the Figure, all of 223 

the curves exhibited the same behavior with respect to the temperature; indeed, fitting the KP(T) data 224 

with the same quadratic function as above, gave KP(300K) = 479.5(4), 514.4(3) and 548.8(3) GPa for P 225 

= 10, 20, and 30 GPa respectively, and the same BT values  as the case of P = 0GPa [-0.96(3)·10-5 226 

GPa/K2]. 227 

 228 

Thermal expansion 229 

The quasi-harmonic estimation of the thermal expansion coefficient as a function of temperature 230 

        (2) 231 

has been plotted in Figure 5 in the [1, 300K] temperature range. The most recent and highly accurate 232 

experimental αV(T) curve from Stoupin and Shvyd’ko (2011) is also reported in the same figure [taking 233 

into account that, in the latter work, the thermal expansion coefficient of the lattice parameter (αL) 234 

has been measured, and the relation between the two coefficients is αV =3αL ]. The two curves nearly 235 

overlap; in particular the difference between the calculated and experimental coefficients, at 300K 236 

(3.19·10-6 and 3.22·10-6K-1, respectively), is 2.7·10-8K-1, which is consistent with the accuracy of 10-8K-1, 237 

estimated for the experimental measurements by Stoupin and Shvyd’ko (2011). Very good agreement 238 

exists with other literature data like those from Reeber and Wang (1996): at 300K the experimental 239 
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datum for αV is 3.05·10-6K-1 (slightly underestimated with respect to the experimental data of Stoupin 240 

and Shvyd’ko 2011); at 1000, 2000 and 3000K the experimental thermal expansion coefficients are 241 

1.34·10-5, 1.64·10-5 and 1.71·10-5K-1 respectively, to be compared with the calculated data of 242 

respectively 1.25·10-5, 1.50·10-5 and 1.60·10-5K-1. 243 

The very high reliability of the thermal expansion behavior, as demonstrated by the comparison of the 244 

calculated data with the experimental ones at room pressure, makes us confident about thermal 245 

expansion data at higher pressures. Figure 6 reports the calculated αV(T) curves for the pressures of 246 

P=0, 10, 20 and 30 GPa, in the [0, 2000K] temperature range. As what it is frequently required is the 247 

cell volume at a given pressure and temperature [VP(T)] , an empirical relation has been derived of the 248 

form: 249 

     (3) 250 

where VP(300K) is the cell volume at pressure P and T=300K. This relation can confidently be used in 251 

the [300, 2500K] temperature range; the five Ci coefficients are reported in Table 3 for seven different 252 

values of the pressure in the [0, 30GPa] range. Coefficients for other values of pressure in the range 253 

can easily be derived by interpolation. As concerns other ab initio determinations of thermal 254 

expansion at high pressure and temperature, substantial agreement exists between our data and 255 

those from Xie et al. (1999), who employed an unspecified standard purely DFT functional, and a 256 

plane wave basis set. Ivanova and Mavrin (2013) also reported the calculation of thermal expansion of 257 

diamond in the [0, 1500K] temperature range (at the LDA-DFT  level of the theory); from the plot they 258 

reported (Figure 4 in Ivanova and Mavrin 2013) it appears that αV = 3·αL = 3.6·10-6 K-1 at 300K, which is 259 

somewhat overestimated with respect to the experimental data from Reeber and Wang (1996) and 260 
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Stoupin and Shvyd’ko (2011) at the same temperature (3.22·10-6 and 3.05·10-6K-1, respectively), but in 261 

substantial agreement with older experimental data from Slack and Bartram (1975), which they use as 262 

reference.  263 

 264 

APPENDIX 265 

Static energies and vibrational frequencies at the (static) equilibrium, and at fixed cell volumes, were 266 

performed by means of the ab initio CRYSTAL09 code (Dovesi et al. 2009), which implements the 267 

Hartree–Fock and Kohn–Sham, Self Consistent Field (SCF) method for the study of periodic systems 268 

(Pisani et al. 1988), by using a Gaussian type basis set. The present choice of the Hamiltonian and the 269 

basis set employed were discussed above in the Computational Details section. The DFT exchange and 270 

correlation contributions to the total energy were evaluated by numerical integration, over the cell 271 

volume, of the appropriate functionals; a (99, 1454)p grid was used, where the notation (nr, nx)p 272 

indicates a pruned grid with nr radial points and nx angular points on the Lebedev surface in the most 273 

accurate integration region (see the ANGULAR keyword in the CRYSTAL09 user’s manual, Dovesi et al. 274 

2009). Such a grid corresponds to 2920 integration points in the unit cell at the equilibrium volume. 275 

The accuracy of the integration can be measured from the error in the integrated total electron 276 

density, which amounts to  5·10-5|e| for a total of 12 electrons in the cell. The thresholds controlling 277 

the accuracy of the calculation of Coulomb and exchange integrals were set to 10 (ITOL1 to ITOL4) 278 

and 22 (ITOL5; Dovesi et al. 2009). The diagonalization of the Hamiltonian matrix was performed at 16 279 

independent k vectors in the reciprocal space (with reference to the primitive unit cell. Monkhorst 280 

net; Monkhrost and Pack 1976) by setting to 6 the shrinking factor IS (Dovesi et al. 2009). 281 
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The cell parameter at the static conditions was optimized by analytical gradient methods, as 282 

implemented in CRYSTAL09 (Civalleri et al. 2001; Dovesi et al. 2009). Geometry optimization was 283 

considered converged when each component of the gradient (TOLDEG parameter in CRYSTAL09) was 284 

smaller than 0.00001 hartree/bohr and displacements (TOLDEX) with respect to the previous step 285 

were smaller than 0.00004 bohr. Static energies at each cell volume are provided as supplementary 286 

material (Table S1a and S1b, for the B1 and B2 basis sets, respectively). Vibrational frequencies and 287 

normal modes were calculated at different cell volumes, within the limit of the harmonic 288 

approximation, by diagonalizing a mass-weighted Hessian matrix, whose elements are the second 289 

derivatives of the full potential of the crystal with respect to mass-weighted atomic displacements 290 

(see Pascale et al., 2004 for details). The threshold for the convergence of the total energy, in the SCF 291 

cycles, was set to 10-10 hartree (TOLDEE parameter in CRYSTAL09). Results are provided as 292 

supplementary material (Tables S2a and S2b for the B1 and the B2 basis sets, respectively).  293 

Total pressures (sum of static, zero point and thermal pressures) at different unit cell volumes and 294 

temperatures are reported as supplementary materials (Table S3). 295 
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Captions to the Tables: 432 
 433 
Table 1: Static cell volume (V0,st; in Å3) and cell parameter (a0,st; in Å) at the static equilibrium (Pst=0); 434 
static bulk moduls (K0,st; in GPa) and its pressure derivative (K’st), obtained with different basis 435 
sets/Hamiltonians (see text for explanations concerning both the basis sets and the Hamiltonians). 436 
 437 
Table 2: Equilibrium cell volume (V0T; in Å3) and cell parameter (a0T; in Å); bulk moduls (K0T; in GPa) 438 
and its pressure derivative (K’T), at the temperature of 300K, calculated with different basis sets 439 
(WC1LYP functional). 440 
 441 
Table 3: Coefficients of the equation (3) for the interpolation of the ratio VP(T)/VP(300K) at several 442 
pressures, in the [300, 2500K] temperature range. See text for explanations.  C1 is in K-1, C2 in K-2, C3 in 443 
K-3, C4 in K and C5 in K2.  444 
 445 
 446 
Captions to the Figures: 447 
 448 
Figure 1: Vibrational density of state of diamond (VDOS). See text for explanation. 449 
 450 
Figure 2: Phonon dispersion in diamond along the [001]* path in the reciprocal space (Δ path), from 451 
the Γ point (Brillouin zone center) to the X point (zone border). The inset represents the experimental 452 
data along the same path, from the work of Warren et al., 1967. Reprinted excerpt with permission 453 
from Warren, J.L., Yarnell, J.L., Dolling, G., and Cowley, R.A., Physical Review, 158, 805, 1967. 454 
Copyright (1967) by the American Physical Society. 455 
 456 
Figure 3: Bulk modulus at 300K (K0 in GPa) as a function of the size of the supercell employed for the 457 
calculation, the latter being measured by the module of the corresponding smallest k vector (in unit 458 
of |a*|). Note that |k|=1 |a|* corresponds to a vector of the reciprocal lattice, which is therefore 459 
equivalent to the Γ point.  460 
 461 
Figure 4: Bulk modulus (Kp) as a function of temperature, at four different pressures (isobar curves). 462 
 463 
Figure 5: Thermal expansion coefficient (αV; referred to the volume of the unit cell) as a function of 464 
temperature (low temperature data). The experimental data (dashed curve) are from the fit as it is 465 
reported in Stoupin and Shvyd’ko (2011). 466 
 467 
Figure 6: Thermal expansion coefficient (α; referred to the unit cell volume) as a function of 468 
temperature, at four different pressures (isobar curves). 469 
 470 
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Tables 1 

 2 

Table 1 3 

Basis set/Hamiltonian V0,st a0,st K0,st K’st 

B1/WC1LYP 45.872 3.5797 445.0 3.62 

B1’/WC1LYP 45.878 3.5799 450.3 3.58 

B2/WC1LYP 45.187 3.5618 456.4 3.62 

B1/B3PW 45.478 3.5694 460.3 3.62 

B2/B3PW 44.793 3.5514 476.3 3.61 

B2/PBE 45.477 3.5694 444.0 3.66 

B3/B3PWa 45.526 3.5707 442.8 3.43 

B3/RHFa 45.358 3.5663 508.7 3.58 

PW/PBEb 45.432 3.5682 432 - 
aZhi-Jianet al. (2009) 
bMounet and Marzari (2005) 
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 5 

Table 2 6 

 V0T a0T K0T K’T 

B1 46.399 3.5934 427.7 3.65 

B2 45.717 3.5757 438.3 3.66 

B1* 45.694 3.5751 439.0 3.65 

B1** 45.689 3.5750 445.4 3.60 
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Table 3 10 

P c1(x106) c2(x109) c3(x1013) c4 c5 

      
0 2.78 5.62 -8.47 -1.48 330.61 
5 2.57 5.47 -8.26 -1.41 316.17 

10 2.37 5.33 -8.07 -1.34 302.75 
15 2.19 5.20 -7.90 -1.28 290.18 
20 2.03 5.07 -7.72 -1.22 278.52 
25 1.88 4.95 -7.55 -1.17 267.50 
30 1.74 4.83 -7.39 -1.12 257.44 
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