10 research outputs found
Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress.
Mitochondrial dysfunction has been implicated in human diseases, including cancer, and proposed to accelerate aging. The Drosophila Cyclin-dependent protein kinase complex cyclin D/cyclin-dependent kinase 4 (CycD/Cdk4) promotes cellular growth by stimulating mitochondrial biogenesis. Here, we examine the neurodegenerative and aging consequences of altering CycD/Cdk4 function in Drosophila. We show that pan-neuronal loss or gain of CycD/Cdk4 increases mitochondrial superoxide, oxidative stress markers, and neurodegeneration and decreases lifespan. We find that RNAi-mediated depletion of the mitochondrial transcription factor, Tfam, can abrogate CycD/Cdk4's detrimental effects on both lifespan and neurodegeneration. This indicates that CycD/Cdk4's pathological consequences are mediated through altered mitochondrial function and a concomitant increase in reactive oxygen species. In support of this, we demonstrate that CycD/Cdk4 activity levels in the brain affect the expression of a set of 'oxidative stress' genes. Our results indicate that the precise regulation of neuronal CycD/Cdk4 activity is important to limit mitochondrial reactive oxygen species production and prevent neurodegeneration
Rheb-TOR signaling promotes protein synthesis, but not glucose or amino acid import, in Drosophila
BACKGROUND: The Ras-related GTPase, Rheb, regulates the growth of animal cells. Genetic and biochemical tests place Rheb upstream of the target of rapamycin (TOR) protein kinase, and downstream of the tuberous sclerosis complex (TSC1/TSC2) and the insulin-signaling pathway. TOR activity is regulated by nutritional cues, suggesting that Rheb might either control, or respond to, nutrient availability. RESULTS: We show that Rheb and TOR do not promote the import of glucose, bulk amino acids, or arginine in Drosophila S2 cells, but that both gene products are important regulators of ribosome biogenesis, protein synthesis, and cell size. S2 cell size, protein synthesis, and glucose import were largely insensitive to manipulations of insulin signaling components, suggesting that cellular energy levels and TOR activity can be maintained through insulin/PI3K-independent mechanisms in S2 cell culture. In vivo in Drosophila larvae, however, we found that insulin signaling can regulate protein synthesis, and thus may affect TOR activity. CONCLUSION: Rheb-TOR signaling controls S2 cell growth by promoting ribosome production and protein synthesis, but apparently not by direct effects on the import of amino acids or glucose. The effect of insulin signaling upon TOR activity varies according to cellular type and context
Intrinsic Negative Cell Cycle Regulation Provided by PIP Box- and Cul4Cdt2-Mediated Destruction of E2f1 during S Phase
E2F transcription factors are key regulators of cell proliferation that are inhibited by pRb family tumor suppressors. pRb-independent modes of E2F inhibition have also been described, but their contribution to animal development and tumor suppression is unclear. Here we show that S phase-specific destruction of Drosophila E2f1 provides a novel mechanism for cell cycle regulation. E2f1 destruction is mediated by a PCNA-interacting-protein (PIP) motif in E2f1 and the Cul4Cdt2 E3 ubiquitin ligase, and requires the Dp dimerization partner but not direct Cdk phosphorylation or Rbf1 binding. E2f1 lacking a functional PIP motif accumulates inappropriately during S phase and is more potent than wild type E2f1 at accelerating cell cycle progression and inducing apoptosis. Thus, S phase-coupled destruction is a key negative regulator of E2f1 activity. We propose that pRb-independent inhibition of E2F during S phase is an evolutionarily conserved feature of the metazoan cell cycle that is necessary for development
Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress
Mitochondrial dysfunction has been implicated in human diseases, including cancer, and proposed to accelerate aging. The Drosophila Cyclin-dependent protein kinase complex cyclin D/cyclin-dependent kinase 4 (CycD/Cdk4) promotes cellular growth by stimulating mitochondrial biogenesis. Here, we examine the neurodegenerative and aging consequences of altering CycD/Cdk4 function in Drosophila. We show that pan-neuronal loss or gain of CycD/Cdk4 increases mitochondrial superoxide, oxidative stress markers, and neurodegeneration and decreases lifespan. We find that RNAi-mediated depletion of the mitochondrial transcription factor, Tfam, can abrogate CycD/Cdk4’s detrimental effects on both lifespan and neurodegeneration. This indicates that CycD/Cdk4’s pathological consequences are mediated through altered mitochondrial function and a concomitant increase in reactive oxygen species. In support of this, we demonstrate that CycD/Cdk4 activity levels in the brain affect the expression of a set of ‘oxidative stress’ genes. Our results indicate that the precise regulation of neuronal CycD/Cdk4 activity is important to limit mitochondrial reactive oxygen species production and prevent neurodegeneration
Recommended from our members
Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress.
Mitochondrial dysfunction has been implicated in human diseases, including cancer, and proposed to accelerate aging. The Drosophila Cyclin-dependent protein kinase complex cyclin D/cyclin-dependent kinase 4 (CycD/Cdk4) promotes cellular growth by stimulating mitochondrial biogenesis. Here, we examine the neurodegenerative and aging consequences of altering CycD/Cdk4 function in Drosophila. We show that pan-neuronal loss or gain of CycD/Cdk4 increases mitochondrial superoxide, oxidative stress markers, and neurodegeneration and decreases lifespan. We find that RNAi-mediated depletion of the mitochondrial transcription factor, Tfam, can abrogate CycD/Cdk4's detrimental effects on both lifespan and neurodegeneration. This indicates that CycD/Cdk4's pathological consequences are mediated through altered mitochondrial function and a concomitant increase in reactive oxygen species. In support of this, we demonstrate that CycD/Cdk4 activity levels in the brain affect the expression of a set of 'oxidative stress' genes. Our results indicate that the precise regulation of neuronal CycD/Cdk4 activity is important to limit mitochondrial reactive oxygen species production and prevent neurodegeneration
Coordination of Growth and Cell Division in the Drosophila Wing
AbstractIn most tissues, cell division is coordinated with increases in mass (i.e., growth). To understand this coordination, we altered rates of division in cell clones or compartments of the Drosophila wing and measured the effects on growth. Constitutive overproduction of the transcriptional regulator dE2F increased expression of the S- and M-phase initiators Cyclin E and String (Cdc25), thereby accelerating cell proliferation. Loss of dE2F or overproduction of its corepressor, RBF, retarded cell proliferation. These manipulations altered cell numbers over a 4- to 5-fold range but had little effect on clone or compartment sizes. Instead, changes in cell division rates were offset by changes in cell size. We infer that dE2F and RBF function specifically in cell cycle control, and that cell cycle acceleration is insufficient to stimulate growth. Variations in dE2F activity could be used to coordinate cell division with growth