4,181 research outputs found
Quasiconformality and mass
We identify universal quasiconformal (walking) behaviour in non-Abelian gauge
field theories based on the mass-dependent all-order beta-function introduced
in arXiv:0908.1364. We find different types of walking behaviour in the
presence of (partially) massive species. We employ our findings to the
construction of candidate theories for dynamical electroweak symmetry breaking
by walking technicolour.Comment: 16 pages, 8 figures
Recursive Calculation of Effective Potential and Variational Resummation
We set up a method for a recursive calculation of the effective potential
which is applied to a cubic potential with imaginary coupling. The result is
resummed using variational perturbation theory (VPT), yielding an exponentially
fast convergence.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of
paper (including all PS fonts) at
http://www.physik.fu-berlin.de/~kleinert/350
Exotic Statistics for Ordinary Particles in Quantum Gravity
Objects exhibiting statistics other than the familiar Bose and Fermi ones are
natural in theories with topologically nontrivial objects including geons,
strings, and black holes. It is argued here from several viewpoints that the
statistics of ordinary particles with which we are already familiar are likely
to be modified due to quantum gravity effects. In particular, such
modifications are argued to be present in loop quantum gravity and in any
theory which represents spacetime in a fundamentally piecewise-linear fashion.
The appearance of unusual statistics may be a generic feature (such as the
deformed position-momentum uncertainty relations and the appearance of a
fundamental length scale) which are to be expected in any theory of quantum
gravity, and which could be testable.Comment: Awarded an honourable mention in the 2008 Gravity Research Foundation
Essay Competitio
Low-Energy Effective Action in Non-Perturbative Electrodynamics in Curved Spacetime
We study the heat kernel for the Laplace type partial differential operator
acting on smooth sections of a complex spin-tensor bundle over a generic
-dimensional Riemannian manifold. Assuming that the curvature of the U(1)
connection (that we call the electromagnetic field) is constant we compute the
first two coefficients of the non-perturbative asymptotic expansion of the heat
kernel which are of zero and the first order in Riemannian curvature and of
arbitrary order in the electromagnetic field. We apply these results to the
study of the effective action in non-perturbative electrodynamics in four
dimensions and derive a generalization of the Schwinger's result for the
creation of scalar and spinor particles in electromagnetic field induced by the
gravitational field. We discover a new infrared divergence in the imaginary
part of the effective action due to the gravitational corrections, which seems
to be a new physical effect.Comment: LaTeX, 42 page
Large-D Expansion from Variational Perturbation Theory
We derive recursively the perturbation series for the ground-state energy of
the D-dimensional anharmonic oscillator and resum it using variational
perturbation theory (VPT). From the exponentially fast converging approximants,
we extract the coefficients of the large-D expansion to higher orders. The
calculation effort is much smaller than in the standard field-theoretic
approach based on the Hubbard-Stratonovich transformation.Comment: Author Information under http://hbar.wustl.edu/~sbrandt and
http://www.theo-phys.uni-essen.de/tp/ags/pelster_di
The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge
A general analytic procedure is developed for the post-Newtonian limit of
-gravity with metric approach in the Jordan frame by using the harmonic
gauge condition. In a pure perturbative framework and by using the Green
function method a general scheme of solutions up to order is shown.
Considering the Taylor expansion of a generic function it is possible to
parameterize the solutions by derivatives of . At Newtonian order,
, all more important topics about the Gauss and Birkhoff theorem are
discussed. The corrections to "standard" gravitational potential
(-component of metric tensor) generated by an extended uniform mass
ball-like source are calculated up to order. The corrections, Yukawa
and oscillating-like, are found inside and outside the mass distribution. At
last when the limit is considered the -gravity converges
in General Relativity at level of Lagrangian, field equations and their
solutions.Comment: 16 pages, 10 figure
On the origin of the difference between time and space
We suggest that the difference between time and space is due to spontaneous
symmetry breaking. In a theory with spinors the signature of the metric is
related to the signature of the Lorentz-group. We discuss a higher symmetry
that contains pseudo-orthogonal groups with arbitrary signature as subgroups.
The fundamental asymmetry between time and space arises then as a property of
the ground state rather than being put into the formulation of the theory a
priori. We show how the complex structure of quantum field theory as well as
gravitational field equations arise from spinor gravity - a fundamental spinor
theory without a metric.Comment: 4 page
The Existence of Einstein Static Universes and their Stability in Fourth order Theories of Gravity
We investigate whether or not an Einstein Static universe is a solution to
the cosmological equations in gravity. It is found that only one class
of theories admits an Einstein Static model, and that this class is
neutrally stable with respect to vector and tensor perturbations for all
equations of state on all scales. Scalar perturbations are only stable on all
scales if the matter fluid equation of state satisfies
. This result is remarkably similar to
the GR case, where it was found that the Einstein Static model is stable for
.Comment: Minor changes, To appear in PR
Semiclassical and Quantum Black Holes and their Evaporation, de Sitter and Anti-de Sitter Regimes, Gravitational and String Phase Transitions
An effective string theory in physically relevant cosmological and black hole
space times is reviewed. Explicit computations of the quantum string entropy,
partition function and quantum string emission by black holes (Schwarzschild,
rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in
the framework of effective string theory in curved backgrounds provide an
amount of new quantum gravity results as: (i) gravitational phase transitions
appear with a distinctive universal feature: a square root branch point
singularity in any space time dimensions. This is of the type of the de Vega -
Sanchez transition for the thermal self-gravitating gas of point particles.
(ii) There are no phase transitions in AdS alone. (iii) For background,
upper bounds of the Hubble constant H are found, dictated by the quantum string
phase transition.(iv) The Hawking temperature and the Hagedorn temperature are
the same concept but in different (semiclassical and quantum) gravity regimes
respectively. (v) The last stage of black hole evaporation is a microscopic
string state with a finite string critical temperature which decays as usual
quantum strings do in non-thermal pure quantum radiation (no information
loss).(vi) New lower string bounds are given for the Kerr-Newman black hole
angular momentum and charge, which are entirely different from the upper
classical bounds. (vii) Semiclassical gravity states undergo a phase transition
into quantum string states of the same system, these states are duals of each
other in the precise sense of the usual classical-quantum (wave-particle)
duality, which is universal irrespective of any symmetry or isommetry of the
space-time and of the number or the kind of space-time dimensions.Comment: review paper, no figures. to appear in Int Jour Mod Phys
- …