47 research outputs found

    Altered placental and fetal expression of IGFs and IGF-binding proteins associated with intrauterine growth restriction in fetal sheep during early and mid-pregnancy.

    Get PDF
    The insulin-like growth factors (IGFs) are postulated to be altered in association with the development of intrauterine growth restriction (IUGR). The present studies examined placental and fetal hepatic mRNA concentration of components of the IGF system at two time points (55 and 90 d gestational age, dGA; Term 147 dGA) in a hyperthermia (HT)-induced sheep model of placental insufficiency-IUGR. Maternal plasma insulin and IGF-I were constant at 55 and 90 dGA and were unaffected by treatment. Umbilical vein insulin concentrations tended to be reduced at 90 dGA following HT exposure. Caruncle IGF-I mRNA was increased at 90 dGA in HT placentae (p \u3c 0.05), while cotyledon concentrations were constant over gestation and unaltered by treatment. In control cotyledons, IGF-II mRNA concentration increased (p \u3c 0.01) and IGFBP-3 decreased between 55 and 90 dGA (p \u3c 0.01). Cotyledon IGF-II and caruncle IGFBP-4 mRNA were elevated at 55 dGA in HT placentae compared with control (p \u3c 0.01 and p \u3c 0.05 respectively). Fetal hepatic IGF-I, IGFBP-2, -3 and -4 concentrations rose over gestation (p \u3c 0.05), but there were no treatment effects. These data suggest that changes in placental IGF expression in early and mid gestation may predispose the pregnancy to placental insufficiency, resulting in inadequate substrate supply to the developing fetus later in gestation

    Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction

    Get PDF
    Background: This study examines the relationship between placental amino acid (AA) transport and fetal AA demand in an ovine fetal growth restriction (FGR) model in which placental underdevelopment induces fetal hypoxemia and hypoglycemia. Methods: Umbilical uptakes of AA, oxygen, glucose, and lactate were measured near term in eight experimental ewes (FGR group) and in eight controls (C group). Results: The FGR group demonstrated significantly reduced umbilical uptakes of oxygen, glucose, lactate, and 11 AAs per kg fetus. The combined uptake of glucose, lactate, and AAs, expressed as nutrient/oxygen quotients, was reduced almost to 1.00 (FGR: 1.05 vs. C: 1.32, P ≤ 0.02). In contrast to a decrease in umbilical glucose concentration, all but one of the AAs that were transported from placenta to fetus demonstrated normal or elevated fetal concentrations, and five of the essential AAs were transported against a significantly higher feto/maternal (F/M) concentration ratio. This ratio peaked at the lowest fetal oxygen levels. Conclusion: We conclude that, in the hypoxic FGR fetus, the reduction in AA uptake is not due to a disproportionally small placental AA transport capacity. It is the consequence of decreased fetal oxidative metabolism and growth rate, which together reduce fetal AA demand. © 2013 International Pediatric Research Foundation, Inc

    The effect of ambient temperature on gross-efficiency in cycling

    Get PDF
    Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling will be studied, with the intent of determining if a heat-induced change in GE could account for the performance decrements in time trial exercise found in literature. Ten well-trained male cyclists performed 20-min cycle ergometer exercise at 60% \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}PVO2max P_{V{\text{O}}_{{\text{2max}}} }\end{document} (power output at which VO2max was attained) in a thermo-neutral climate (N) of 15.6 ± 0.3°C, 20.0 ± 10.3% RH and a hot climate (H) of 35.5 ± 0.5°C, 15.5 ± 3.2% RH. GE was calculated based on VO2 and RER. Skin temperature (Tsk), rectal temperature (Tre) and muscle temperature (Tm) (only in H) were measured. GE was 0.9% lower in H compared to N (19.6 ± 1.1% vs. 20.5 ± 1.4%) (P < 0.05). Tsk (33.4 ± 0.6°C vs. 27.7 ± 0.7°C) and Tre (37.4 ± 0.6°C vs. 37.0 ± 0.6°C) were significantly higher in H. Tm was 38.7 ± 1.1°C in H. GE was lower in heat. Tm was not high enough to make mitochondrial leakage a likely explanation for the observed reduced GE. Neither was the increased Tre. Increased skin blood flow might have had a stealing effect on muscular blood flow, and thus impacted GE. Cycling model simulations showed, that the decrease in GE could account for half of the performance decrement. GE decreased in heat to a degree that could explain at least part of the well-established performance decrements in the heat

    Temporal Processing of Vibratory Communication Signals at the Level of Ascending Interneurons in Nezara viridula (Hemiptera: Pentatomidae)

    Get PDF
    During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition

    Perceived Object Stability Depends on Multisensory Estimates of Gravity

    Get PDF
    BACKGROUND: How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. METHODOLOGY/PRINCIPAL FINDINGS: In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). CONCLUSIONS/SIGNIFICANCE: Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall
    corecore