1,565 research outputs found

    Density-Functional-Theory Calculations of Matter in Strong Magnetic Fields: I. Atoms and Molecules

    Get PDF
    We present new ab initio calculations of the electronic structure of various atoms and molecules in strong magnetic fields ranging from B=10^12 G to 2x10^15 G, appropriate for radio pulsars and magnetars. For these field strengths, the magnetic forces on the electrons dominate over the Coulomb forces, and to a good approximation the electrons are confined to the ground Landau level. Our calculations are based on the density functional theory, and use a local magnetic exchange-correlation function which is tested to be reliable in the strong field regime. Numerical results of the ground-state energies are given for H_N (up to N=10), He_N (up to N=8), C_N (up to N=5) and Fe_N (up to N=3), as well as for various ionized atoms. Fitting formulae for the B-dependence of the energies are also given. In general, as N increases, the binding energy per atom in a molecule, |E_N|/N, increases and approaches a constant value. For all the field strengths considered in this paper, hydrogen, helium, and carbon molecules are found to be bound relative to individual atoms (although for B less than a few x 10^12 G, the relative binding between C and C_2 is small). Iron molecules are not bound at B<10^13 G, but become energetically more favorable than individual atoms at larger field strengths.Comment: 19 pages, 4 figures. Minor changes, figure omissions. Phys. Rev. A in pres

    Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation

    Get PDF
    PURPOSE: Accurate lesion segmentation is important for measurements of lesion load and atrophy in subjects with multiple sclerosis (MS). International MS lesion challenges show a preference of convolutional neural networks (CNN) strategies, such as nicMSlesions. However, since the software is trained on fairly homogenous training data, we aimed to test the performance of nicMSlesions in an independent dataset with manual and other automatic lesion segmentations to determine whether this method is suitable for larger, multi-center studies. METHODS: Manual lesion segmentation was performed in fourteen subjects with MS on sagittal 3D FLAIR images from a 3T GE whole-body scanner with 8-channel head coil. We compared five different categories of automated lesion segmentation methods for their volumetric and spatial agreement with manual segmentation: (i) unsupervised, untrained (LesionTOADS); (ii) supervised, untrained (LST-LPA and nicMSlesions with default settings); (iii) supervised, untrained with threshold adjustment (LST-LPA optimized for current data); (iv) supervised, trained with leave-one-out cross-validation on fourteen subjects with MS (nicMSlesions and BIANCA); and (v) supervised, trained on a single subject with MS (nicMSlesions). Volumetric accuracy was determined by the intra-class correlation coefficient (ICC) and spatial accuracy by Dice's similarity index (SI). Volumes and SI were compared between methods using repeated measures ANOVA or Friedman tests with post-hoc pairwise comparison. RESULTS: The best volumetric and spatial agreement with manual was obtained with the supervised and trained methods nicMSlesions and BIANCA (ICC absolute agreement > 0.968 and median SI > 0.643) and the worst with the unsupervised, untrained method LesionTOADS (ICC absolute agreement = 0.140 and median SI = 0.444). Agreement with manual in the single-subject network training of nicMSlesions was poor for input with low lesion volumes (i.e. two subjects with lesion volumes ≤ 3.0 ml). For the other twelve subjects, ICC varied from 0.593 to 0.973 and median SI varied from 0.535 to 0.606. In all cases, the single-subject trained nicMSlesions segmentations outperformed LesionTOADS, and in almost all cases it also outperformed LST-LPA. CONCLUSION: Input from only one subject to re-train the deep learning CNN nicMSlesions is sufficient for adequate lesion segmentation, with on average higher volumetric and spatial agreement with manual than obtained with the untrained methods LesionTOADS and LST-LPA

    Neoadjuvant radiotherapy of primary irresectable unicentric Castleman's disease: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Castleman disease (CD) is a rare benign disorder characterised by hyperplasia of lymphoid tissue that may develop at a single site or throughout the body. The etiology of this disorder is unclear, although the histopathological presentation can be differentiated into a hyaline vascular variant, a plasma cell variant and a mixed variant. Clinically, it has been recorded that 3 manifestations of CD are characterized: a localized unicentric type, a generalized multicentric type and a mixed form. Surgery remains the main treatment for resectable unicentric CD, since removal of the large node is possible without further complications. No consensus has been reached concerning the most adequate treatment for irresectable unicentric CD.</p> <p>Methods</p> <p>Case report of a 67 year old woman.</p> <p>Results</p> <p>This report, describes the case of a 67-year-old woman with unicentric Castleman disease located in the right lower abdomen. The patient had symptoms of fatigue, dyspnoea and pain in the right lower abdomen. Computed tomography (CT)- examination revealed a tumour, which had grown to form a close relationship with the common iliac vessels and the sacral bone. A Laparotomy procedure revealed that the tumour was an irresectable mass. Neo-adjuvant radiotherapy (40 Gy) was administered in order to downsize the tumour. Six weeks later a new CT-scan revealed a major reduction of the tumour, which enabled a successful radical resection of the tumour to be performed. Histopathological analysis of the tumour showed the hyaline vascular type of CD.</p> <p>Conclusions</p> <p>Neo-adjuvant radiotherapy should be considered in case of an irresectable unicentric CD.</p

    Bias in protein and potassium intake collected with 24-h recalls (EPIC-Soft) is rather comparable across European populations

    Get PDF
    Purpose: We investigated whether group-level bias of a 24-h recall estimate of protein and potassium intake, as compared to biomarkers, varied across European centers and whether this was influenced by characteristics of individuals or centers. Methods: The combined data from EFCOVAL and EPIC studies included 14 centers from 9 countries (n = 1,841). Dietary data were collected using a computerized 24-h recall (EPIC-Soft). Nitrogen and potassium in 24-h urine collections were used as reference method. Multilevel linear regression analysis was performed, including individual-level (e.g., BMI) and center-level (e.g., food pattern index) variables. Results: For protein intake, no between-center variation in bias was observed in men while it was 5.7% in women. For potassium intake, the between-center variation in bias was 8.9% in men and null in women. BMI was an important factor influencing the biases across centers (p <0.01 in all analyses). In addition, mode of administration (p = 0.06 in women) and day of the week (p = 0.03 in men and p = 0.06 in women) may have influenced the bias in protein intake across centers. After inclusion of these individual variables, between-center variation in bias in protein intake disappeared for women, whereas for potassium, it increased slightly in men (to 9.5%). Center-level variables did not influence the results. Conclusion: The results suggest that group-level bias in protein and potassium (for women) collected with 24-h recalls does not vary across centers and to a certain extent varies for potassium in men. BMI and study design aspects, rather than center-level characteristics, affected the biases across center

    An unusual variant of choledochal cyst: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Choledochal cyst is an uncommon congenital disease of the biliary tract in the UK. There are five main types of choledochal cyst with several recognised sub-types. However, occasional variants do occur.</p> <p>Case presentation</p> <p>We report a case of a female infant with an antenatally diagnosed choledochal cyst. The operative cholangiogram revealed an unusual intrahepatic biliary tree. The cyst was successfully excised and the infant is well at 18-months follow up.</p> <p>Conclusion</p> <p>The anatomy should be clearly defined before surgical excision as abnormal variants can occur, which usually do not fit into the known classification types and subtypes.</p

    Black Holes in Modified Gravity (MOG)

    Get PDF
    The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass MM with two horizons. The strength of the gravitational constant is G=GN(1+α)G=G_N(1+\alpha) where α\alpha is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass MM, the parameter α\alpha and the spin angular momentum J=MaJ=Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published version in European Physics Journal
    corecore