124 research outputs found

    Increased rate of respiratory symptoms in children with Down syndrome:A 2-year web-based parent-reported prospective study

    Get PDF
    To compare the incidence of respiratory symptoms and short-term consequences between children with Down syndrome and children from the general population, we conducted a prospective parent-reported observational study. Children with Down syndrome (≤ 18 years) were included between March 2012 and June 2014. Caregivers received a baseline questionnaire with follow-up 1-2 years after inclusion. Caregivers received a weekly questionnaire about respiratory symptoms, fever, antibiotic prescriptions, doctor's visits, and consequences for school and work attendance. Children with Down syndrome were compared to a cohort of the general population ("Kind en Ziek" study) with similar weekly questionnaires. A total of 9,011 childweeks were reported for 116 participants with Down syndrome (75% response rate). The frequency of respiratory symptoms was higher in children with Down syndrome than in children from the general population (30% vs 15.2%). In addition, symptoms subsided later (around 8 vs 5 years of age). The seasonal influence was limited, both in children with Down syndrome and children from the general population. Consequences of respiratory disease were significant in children with Down syndrome compared to children from the general population, with a higher rate of doctor's visits (21.3% vs 11.8%), antibiotic prescriptions (47.8% vs 26.3%), and absenteeism from school (55.5% vs 25.4%) and work (parents, 9.4% vs 8.1%). Conclusion: Children with Down syndrome have a higher frequency of respiratory symptoms and symptoms last until a later age, confirming the impression of professionals and caregivers. Individualized treatment plans might prevent unfavorable consequences of chronic recurrent respiratory disease in children with Down syndrome. What is Known: • Children with Down syndrome have an altered immune system and are prone to a more severe course of respiratory tract infections. • The overall conception is that patients with Down syndrome suffer from respiratory tract infections more often. What is New: • Children with Down syndrome suffer from respiratory symptoms more frequently than children from the general population. • The respiratory symptoms in children with Down syndrome subside at a later age compared to children from the general population

    Development of a dedicated 3D printed myocardial perfusion phantom:proof-of-concept in dynamic SPECT

    Get PDF
    We aim to facilitate phantom-based (ground truth) evaluation of dynamic, quantitative myocardial perfusion imaging (MPI) applications. Current MPI phantoms are static representations or lack clinical hard- and software evaluation capabilities. This proof-of-concept study demonstrates the design, realisation and testing of a dedicated cardiac flow phantom. The 3D printed phantom mimics flow through a left ventricular cavity (LVC) and three myocardial segments. In the accompanying fluid circuit, tap water is pumped through the LVC and thereafter partially directed to the segments using adjustable resistances. Regulation hereof mimics perfusion deficit, whereby flow sensors serve as reference standard. Seven phantom measurements were performed while varying injected activity of 99mTc-tetrofosmin (330–550 MBq), cardiac output (1.5–3.0 L/min) and myocardial segmental flows (50–150 mL/min). Image data from dynamic single photon emission computed tomography was analysed with clinical software. Derived time activity curves were reproducible, showing logical trends regarding selected input variables. A promising correlation was found between software computed myocardial flows and its reference (ρ= − 0.98; p = 0.003). This proof-of-concept paper demonstrates we have successfully measured first-pass LV flow and myocardial perfusion in SPECT-MPI using a novel, dedicated, myocardial perfusion phantom. Graphical abstract: This proof-of-concept study focuses on the development of a novel, dedicated myocardial perfusion phantom, ultimately aiming to contribute to the evaluation of quantitative myocardial perfusion imaging applications. [Figure not available: see fulltext.

    Sulfonylurea derivatives and cancer, friend or foe?

    Get PDF
    Type 2 diabetes mellitus (T2DM) is associated with a higher risk of cancer and cancer-related mortality. Increased blood glucose and insulin levels in T2DM patients may be, at least in part, responsible for this effect. Indeed, lowering glucose and/or insulin levels pharmacologically appears to reduce cancer risk and progression, as has been demonstrated for the biguanide metformin in observational studies. Studies investigating the influence of sulfonylurea derivatives (SUs) on cancer risk have provided conflicting results, partly due to comparisons with metformin. Furthermore, little attention has been paid to within-class differences in systemic and off-target effects of the SUs. The aim of this systematic review is to discuss the available preclinical and clinical evidence on how the different SUs influence cancer development and risk. Databases including PubMed, Cochrane, Database of Abstracts on Reviews and Effectiveness, and trial registries were systematically searched for available clinical and preclinical evidence on within-class differences of SUs and cancer risk. The overall preclinical and clinical evidence suggest that the influence of SUs on cancer risk in T2DM patients differs between the various SUs. Potential mechanisms include differing affinities for the sulfonylurea receptors and thus differential systemic insulin exposure and off-target anti-cancer effects mediated for example through potassium transporters and drug export pumps. Preclinical evidence supports potential anti-cancer effects of SUs, which are of interest for further studies and potentially repurposing of SUs. At this time, the evidence on differences in cancer risk between SUs is not strong enough to guide clinical decision making

    Surgical Treatment of Diabetic Foot Ulcers Complicated by Osteomyelitis with Gentamicin-Loaded Calcium Sulphate-Hydroxyapatite Biocomposite

    Get PDF
    Diabetic foot ulcers, complicated by osteomyelitis, can be treated by surgical resection, dead space filling with gentamicin-loaded calcium sulphate-hydroxyapatite (CaS-HA) biocomposite, and closure of soft tissues and skin. To assess the feasibility of this treatment regimen, we conducted a multicenter retrospective cohort study of patients after failed conventional treatments. From 13 hospitals we included 64 patients with forefoot (n = 41 (64%)), midfoot (n = 14 (22%)), or hindfoot (n = 9 (14%)) ulcers complicated by osteomyelitis. Median follow-up was 43 (interquartile range, 20-61) weeks. We observed wound healing in 54 patients (84%) and treatment success (wound healing without ulcer recurrence) in 42 patients (66%). Treatment failures (no wound healing or ulcer recurrence) led to minor amputations in four patients (6%) and major amputations in seven patients (11%). Factors associated with treatment failures in univariable Cox regression analysis were gentamicin-resistant osteomyelitis (hazard ratio (HR), 3.847; 95%-confidence interval (CI), 1.065-13.899), hindfoot ulcers (HR, 3.624; 95%-CI, 1.187-11.060) and surgical procedures with gentamicin-loaded CaS-HA biocomposite that involved minor amputations (HR, 3.965; 95%-CI, 1.608-9.777). In this study of patients with diabetic foot ulcers, complicated by osteomyelitis, surgical treatment with gentamicin-loaded CaS-HA biocomposite was feasible and successful in 66% of patients. A prospective trial of this treatment regimen, based on a uniform treatment protocol, is required

    P-Glycoprotein Acts as an Immunomodulator during Neuroinflammation

    Get PDF
    Background: Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which autoreactive myelin-specific T cells cause extensive tissue damage, resulting in neurological deficits. In the disease process, T cells are primed in the periphery by antigen presenting dendritic cells (DCs). DCs are considered to be crucial regulators of specific immune responses and molecules or proteins that regulate DC function are therefore under extensive investigation. We here investigated the potential immunomodulatory capacity of the ATP binding cassette transporter P-glycoprotein (Pgp). P-gp generally drives cellular efflux of a variety of compounds and is thought to be involved in excretion of inflammatory agents from immune cells, like DCs. So far, the immunomodulatory role of these ABC transporters is unknown. Methods and Findings: Here we demonstrate that P-gp acts as a key modulator of adaptive immunity during an in vivo model for neuroinflammation. The function of the DC is severely impaired in P-gp knockout mice (Mdr1a/1b-/-), since both DC maturation and T cell stimulatory capacity is significantly decreased. Consequently, Mdr1a/1b-/- mice develop decreased clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Reduced clinical signs coincided with impaired T cell responses and T cell-specific brain inflammation. We here describe the underlying molecular mechanism and demonstrate that P-gp is crucial for the secretion of pro-inflammatory cytokines such as TNF-alpha and IFN-gamma. Importantly, the defect in DC function can be restored by exogenous addition of these cytokines. Conclusions: Our data demonstrate that P-gp downmodulates DC function through the regulation of pro-inflammatory cytokine secretion, resulting in an impaired immune response. Taken together, our work highlights a new physiological role for P-gp as an immunomodulatory molecule and reveals a possible new target for immunotherap

    MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis.

    Get PDF
    Blood-brain barrier (BBB) dysfunction is a major hallmark of many neurological diseases, including multiple sclerosis (MS). Using a genomics approach, we defined a microRNA signature that is diminished at the BBB of MS patients. In particular, miR-125a-5p is a key regulator of brain endothelial tightness and immune cell efflux. Our findings suggest that repair of a disturbed BBB through microRNAs may represent a novel avenue for effective treatment of MS

    Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    Get PDF
    BACKGROUND: The sphingosine 1-phosphate (S1P) receptor modulator FTY720P (Gilenya®) potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB) functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P(5) largely contributes to the maintenance of brain endothelial barrier function. METHODS: We analyzed the expression of S1P(5) in human post-mortem tissues using immunohistochemistry. The function of S1P(5) at the BBB was assessed in cultured human brain endothelial cells (ECs) using agonists and lentivirus-mediated knockdown of S1P(5). Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. RESULTS: We show that activation of S1P(5) on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P(5) in brain ECs. Interestingly, functional studies with these cells revealed that S1P(5) strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P(5) maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. CONCLUSION: Our findings demonstrate that S1P(5) in brain ECs contributes to optimal barrier formation and maintenance of immune quiescence of the barrier endothelium

    Predicting overall survival and resection in patients with locally advanced pancreatic cancer treated with FOLFIRINOX:Development and internal validation of two nomograms

    Get PDF
    Background and Objectives Patients with locally advanced pancreatic cancer (LAPC) are increasingly treated with FOLFIRINOX, resulting in improved survival and resection of tumors that were initially unresectable. It remains unclear, however, which specific patients benefit from FOLFIRINOX. Two nomograms were developed predicting overall survival (OS) and resection at the start of FOLFIRINOX for LAPC. Methods From our multicenter, prospective LAPC registry in 14 Dutch hospitals, LAPC patients starting first-line FOLFIRINOX (April 2015-December 2017) were included. Stepwise backward selection according to the Akaike Information Criterion was used to identify independent baseline predictors for OS and resection. Two prognostic nomograms were generated. Results A total of 252 patients were included, with a median OS of 14 months. Thirty-two patients (13%) underwent resection, with a median OS of 23 months. Older age, female sex, Charlson Comorbidity Index 1, involvement of the superior mesenteric artery, celiac trunk, and superior mesenteric vein >= 270 degrees were independent factors decreasing the probability of resection (c-index: 0.79). Conclusions Two nomograms were developed to predict OS and resection in patients with LAPC before starting treatment with FOLFIRINOX. These nomograms could be beneficial in the shared decision-making process and counseling of these patients

    A case series of familial ARID1B variants illustrating variable expression and suggestions to update the ACMG criteria

    Get PDF
    ARID1B is one of the most frequently mutated genes in intellectual disability (~1%). Most variants are readily classified, since they are de novo and are predicted to lead to loss of function, and therefore classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants. However, familial loss-of-function variants can also occur and can be challenging to interpret. Such variants may be pathogenic with variable expression, causing only a mild phenotype in a parent. Alternatively, since some regions of the ARID1B gene seem to be lacking pathogenic variants, loss-of-function variants in those regions may not lead to ARID1B haploinsufficiency and may therefore be benign. We describe 12 families with potential loss-of-function variants, which were either familial or with unknown inheritance and were in regions where pathogenic variants have not been described or are otherwise challenging to interpret. We performed detailed clinical and DNA methylation studies, which allowed us to confidently classify most variants. In five families we observed transmission of pathogenic variants, confirming their highly variable expression. Our findings provide further evidence for an alternative translational start site and we suggest updates for the ACMG guidelines for the interpretation of sequence variants to incorporate DNA methylation studies and facial analyses
    corecore