17 research outputs found

    Cross-validation of generic risk assessment tools for animal disease incursion based on a case study for African swine fever

    Get PDF
    In recent years, several generic risk assessment (RA) tools have been developed that can be applied to assess the incursion risk of multiple infectious animal diseases allowing for a rapid response to a variety of newly emerging or re-emerging diseases. Although these tools were originally developed for different purposes, they can be used to answer similar or even identical risk questions. To explore the opportunities for cross-validation, seven generic RA tools were used to assess the incursion risk of African swine fever (ASF) to the Netherlands and Finland for the 2017 situation and for two hypothetical scenarios in which ASF cases were reported in wild boar and/or domestic pigs in Germany. The generic tools ranged from qualitative risk assessment tools to stochastic spatial risk models but were all parameterized using the same global databases for disease occurrence and trade in live animals and animal products. A comparison of absolute results was not possible, because output parameters represented different endpoints, varied from qualitative probability levels to quantitative numbers, and were expressed in different units. Therefore, relative risks across countries and scenarios were calculated for each tool, for the three pathways most in common (trade in live animals, trade in animal products, and wild boar movements) and compared. For the 2017 situation, all tools evaluated the risk to the Netherlands to be higher than Finland for the live animal trade pathway, the risk to Finland the same or higher as the Netherlands for the wild boar pathway, while the tools were inconclusive on the animal products pathway. All tools agreed that the hypothetical presence of ASF in Germany increased the risk to the Netherlands, but not to Finland. The ultimate aim of generic RA tools is to provide risk-based evidence to support risk managers in making informed decisions to mitigate the incursion risk of infectious animal diseases. The case study illustrated that conclusions on the ASF risk were similar across the generic RA tools, despite differences observed in calculated risks. Hence, it was concluded that the cross-validation contributed to the credibility of their results.info:eu-repo/semantics/publishedVersio

    Comparing the transmission of carbapenemase-producing and extended-spectrum beta-lactamase-producingEscherichia colibetween broiler chickens

    Get PDF
    Abstract The emergence of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to public health, because of their resistance to clinically important carbapenem antibiotics. The emergence of CPE in meat-producing animals is particularly worrying because consumption of meat contaminated with resistant bacteria similar to CPE, such as extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, contributed to colonization in humans worldwide. Currently, no data on the transmission of CPE in livestock is available. We performed a transmission experiment to quantify the transmission of CPE between broilers to fill this knowledge gap and to compare the transmission rates of CPE and other antibiotic-resistant E. coli. A total of 180 Ross 308 broiler chickens were distributed on the day of hatch (day 0) over 12 pens. On day 5, half of the chickens in each pen were orally inoculated with 5·102 colony-forming units of CPE, ESBL, or chloramphenicol-resistant E. coli (catA1). Amoxicillin drinking water treatment was given twice daily in 6 of the 12 pens from days 2 to 6 to evaluate the effect of antibiotic treatment on the transmission rates. Cloacal swabs of all animals were taken to determine the number of infectious broilers. We used a Bayesian hierarchical model to quantify the transmission of the E. coli strains. E. coli can survive in the environment and serve as a reservoir. Therefore, the susceptible-infectious transmission model was adapted to account for the transmission of resistant bacteria from the environment. In addition, the caecal microbiome was analyzed on day 5 and at the end of the experiment on day 14 to assess the relationship between the caecal microbiome and the transmission rates. The transmission rates of CPE were 52 – 68 per cent lower compared to ESBL and catA1, but it is not clear if these differences were caused by differences between the resistance genes or between the E. coli strains. Differences between the groups in transmission rates and microbiome diversity did not correspond to each other, indicating that differences in transmission rates were probably not caused by major differences in the community structure in the caecal microbiome. Amoxicillin treatment from day 2 to 6 increased the transmission rate more than three-fold in all inoculums. It also increased alpha-diversity compared to untreated animals on day 5, but not on day 14, suggesting only a temporary effect. Future research could incorporate more complex transmission models with different species of resistant bacteria into the Bayesian hierarchical model

    Comparing the transmission of carbapenemase-producing and extended-spectrum beta-lactamase-producing Escherichia coli between broiler chickens

    Get PDF
    The emergence of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to public health, because of their resistance to clinically important carbapenem antibiotics. The emergence of CPE in meat-producing animals is particularly worrying because consumption of meat contaminated with resistant bacteria comparable to CPE, such as extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, contributed to colonization in humans worldwide. Currently, no data on the transmission of CPE in livestock is available. We performed a transmission experiment to quantify the transmission of CPE between broilers to fill this knowledge gap and to compare the transmission rates of CPE and other antibiotic-resistant E. coli. A total of 180 Ross 308 broiler chickens were distributed over 12 pens on the day of hatch (day 0). On day 5, half of the 10 remaining chickens in each pen were orally inoculated with 5·10 2 colony-forming units of CPE, ESBL, or chloramphenicol-resistant E. coli (catA1). To evaluate the effect of antibiotic treatment, amoxicillin was given twice daily in drinking water in 6 of the 12 pens from days 2-6. Cloacal swabs of all animals were taken to determine the number of infectious broilers. We used a Bayesian hierarchical model to quantify the transmission of the E. coli strains. E. coli can survive in the environment and serve as a reservoir. Therefore, the susceptible-infectious transmission model was adapted to account for the transmission of resistant bacteria from the environment. In addition, the caecal microbiome was analyzed on day 5 and at the end of the experiment on day 14 to assess the relationship between the caecal microbiome and the transmission rates. The transmission rates of CPE were 52 - 68 per cent lower compared to ESBL and catA1, but it is not clear if these differences were caused by differences between the resistance genes or by other differences between the E. coli strains. Differences between the groups in transmission rates and microbiome diversity did not correspond to each other, indicating that differences in transmission rates were probably not caused by major differences in the community structure in the caecal microbiome. Amoxicillin treatment from day 2-6 increased the transmission rate more than three-fold in all inoculums. It also increased alpha-diversity compared to untreated animals on day 5, but not on day 14, suggesting only a temporary effect. Future research could incorporate more complex transmission models with different species of resistant bacteria into the Bayesian hierarchical model

    Health effects of feeding genetically modified (GM) crops to livestock animals : A review

    No full text
    A large share of genetically modified (GM) crops grown worldwide is processed into livestock feed. Feed safety of GM crops is primarily based on compositional equivalence with near-isogenic cultivars and experimental trials in rodents. However, feeding studies in target animals add to the evaluation of GM crops with respect to animal health. This review aimed to evaluate the possible health effects of feeding GM crops to livestock by reviewing scientific publications on experimental studies in ruminants, pigs, and poultry in which at least one of the following health parameters was investigated: body condition score, organ weight, haematology, serum biochemistry, histopathology, clinical examination, immune response, or gastrointestinal microbiota. In most experiments, either Bt (Bacillus thuringiensis) maize, Roundup Ready (RR) soybean, or both were fed to livestock animals. Significant differences (P<0.05) in health parameters were most often observed when animals were fed Bt maize, although most effects measured were unlikely to be of biological significance and were within normal biological ranges. Health effects of RR soybean were only observed in one experimental study with broilers. Based on this literature review, we conclude that there is no clear evidence that feed composed of first generation GM crops has adverse effects on animal health

    Quantitative risk assessment of the introduction of low pathogenic avian influenza H5 and H7 strains into Poland via legal import of live poultry

    No full text
    Low pathogenic avian influenza (LPAI) caused by H5 and H7 viruses is considered a threatening disease for poultry production due to the possibility of prolonged undetected virus circulation in a poultry flock and its potential to mutate to highly pathogenic avian influenza (HPAI). The occurrence of HPAI may have devastating impact on the poultry industry and has serious economic consequences. The possibility of LPAI virus (LPAIV) being introduced into Poland via import of live poultry from EU countries was considered. The main aim of the study was to quantitatively assess the probability of LPAIV H5 and H7 introduction into Poland (PLPAI) via this pathway, to evaluate the relative contribution of exporting countries and species of poultry to this probability and to present the spatial distribution of the introduction probability in Poland. To this end, a stochastic multilevel binomial risk model, taking into account uncertainty and variability of input parameter values, was developed. The results of this model indicate that the mean annual probability of LPAIV H5 or H7 introduction into Poland is 0.088 [95 % uncertainty interval: 0.0575, 0.128], which corresponds to, on average, one outbreak every 11 years. The countries contributing most to this probability are Germany, Czech Republic and Denmark. Importations of ducks, chickens and turkeys contribute most to PLPAI, whereas importations of geese and guinea fowl represent a minor risk. The probability of LPAIV introduction is not equally distributed across Poland with the majority of counties having a high probability of LPAIV introduction being located in the Western part of the country. The results of this study can be used to support decision makers on targeted prevention or risk-based surveillance strategies for LPAI.</p

    A Generic Risk Assessment Model for Animal Disease Entry through Wildlife : The Example of Highly Pathogenic Avian Influenza and African Swine Fever in The Netherlands

    No full text
    Animal diseases can enter countries or regions through the movements of infected wildlife. A generic risk model would allow to quantify the risk of entry via this introduction route for different diseases and wildlife species, despite the vast variety in both, and help policy-makers to make informed decisions. Here, we propose such a generic risk assessment model and illustrate its application by assessing the risk of entry of African swine fever (ASF) through wild boar and highly pathogenic avian influenza (HPAI) through wild birds for the Netherlands between 2014–2021. We used disease outbreak data and abstracted movement patterns to populate a stochastic risk model. We found that the entry risk of HPAI fluctuated between the years, with a peak in 2021. In that year, we estimated the number of infected birds to reach the Dutch border by wild bird migration at 273 (95% uncertainty interval: 254–290). The probability that ASF outbreaks that occurred between 2014 and 2021 reached the Dutch border through wild boar movement was very low throughout the whole period; only the upper confidence bound indicated a small entry risk. On a yearly scale, the predicted entry risk for HPAI correlated well with the number of observed outbreaks. In conclusion, we present a generic and flexible framework to assess the entry risk of disease through wildlife. The model allows rapid and transparent estimation of the entry risk for diverse diseases and wildlife species. The modular structure of the model allows for adding nuance and complexity when required or when more data becomes available

    Quantitative Risk Assessment for the Introduction of Carbapenem-Resistant Enterobacteriaceae (CPE) into Dutch Livestock Farms

    Get PDF
    Early detection of emerging carbapenem-resistant Enterobacteriaceae (CPE) in food-producing animals is essential to control the spread of CPE. We assessed the risk of CPE introduction from imported livestock, livestock feed, companion animals, hospital patients, and returning travelers into livestock farms in The Netherlands, including (1) broiler, (2) broiler breeder, (3) fattening pig, (4) breeding pig, (5) farrow-to-finish pig, and (6) veal calf farms. The expected annual number of introductions was calculated from the number of farms exposed to each CPE source and the probability that at least one animal in an exposed farm is colonized. The total number of farms with CPE colonization was estimated to be the highest for fattening pig farms, whereas the probability of introduction for an individual farm was the highest for broiler farms. Livestock feed and imported livestock are the most likely sources of CPE introduction into Dutch livestock farms. Sensitivity analysis indicated that the number of fattening pig farms determined the number of high introductions in fattening pigs from feed, and that uncertainty on CPE prevalence impacted the absolute risk estimate for all farm types. The results of this study can be used to inform risk-based surveillance for CPE in livestock farms

    Multidirectional dynamic model for the spread of extended-spectrum-β-lactamase-producing Escherichia coli in the Netherlands

    No full text
    Extended-spectrum-β-lactamase-producing Escherichia coli (ESBL-EC) is a major public health concern. A better understanding of the dynamics of ESBL-EC transmission is required for effective prevention and control. We present here a multidirectional dynamic risk model for ESBL-EC transmission between broiler flocks, broiler farmers, and the open community, parameterized for the Netherlands. A discrete-time model was used to describe the transmission of ESBL-EC within and between populations including modeling the flock-to-human transmission via food consumption due to contamination at the slaughterhouse and/or during food preparation. The ESBL-EC prevalence reached an equilibrium prevalence of 0.65%, 24.7%, and 15.9% in the open community, farmers, and broiler flocks, respectively. The colonization of the open community could primarily be attributed to the open community itself (62%), followed by vegetable consumption (29.5%), and contact with farmers (8.5%). Model results were most sensitive to the estimated colonization and decolonization rate for humans. What-if analysis to explore the effect of interventions in the food production chain (i.e. from farm to fork) on the ESBL-EC prevalence in the open community indicated that interventions aimed at reducing the spread of ESBL-EC within broiler flocks were most effective. Interventions in the consumer phase (reduced cross-contamination in the kitchen, and reduced chicken meat consumption) resulted in a slightly lower ESBL-EC prevalence in the open community. Reducing cross-contamination at the slaughterhouse or reducing the proportion of broiler flocks with high antimicrobial use hardly had any effect on the prevalence in the open community. These results illustrate the relevance of the model for supporting the development of antimicrobial resistance risk mitigation strategies as part of public health policy making

    Quantitative Risk Assessment for the Introduction of Carbapenem-Resistant Enterobacteriaceae (CPE) into Dutch Livestock Farms

    No full text
    Early detection of emerging carbapenem-resistant Enterobacteriaceae (CPE) in food-producing animals is essential to control the spread of CPE. We assessed the risk of CPE introduction from imported livestock, livestock feed, companion animals, hospital patients, and returning travelers into livestock farms in The Netherlands, including (1) broiler, (2) broiler breeder, (3) fattening pig, (4) breeding pig, (5) farrow-to-finish pig, and (6) veal calf farms. The expected annual number of introductions was calculated from the number of farms exposed to each CPE source and the probability that at least one animal in an exposed farm is colonized. The total number of farms with CPE colonization was estimated to be the highest for fattening pig farms, whereas the probability of introduction for an individual farm was the highest for broiler farms. Livestock feed and imported livestock are the most likely sources of CPE introduction into Dutch livestock farms. Sensitivity analysis indicated that the number of fattening pig farms determined the number of high introductions in fattening pigs from feed, and that uncertainty on CPE prevalence impacted the absolute risk estimate for all farm types. The results of this study can be used to inform risk-based surveillance for CPE in livestock farms
    corecore