307 research outputs found

    Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in James, B., de Vos, A., Aluwihare, L., Youngs, S., Ward, C., Nelson, R., Michel, A., Hahn, M., & Reddy, C. Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire. ACS Environmental Au, 2(5), (2022): 467–479, https://doi.org/10.1021/acsenvironau.2c00020.In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or “nurdles” (∼1680 tons), littering the country’s coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. Additional support was provided by the WHOI Marine Microplastics Catalyst Program, the WHOI Marine Microplastics Innovation Accelerator Program, the WHOI Investment in Science Fund, the March Marine Initiative (a program of March Limited, Bermuda), The Seaver Institute, Gerstner Philanthropies, the Wallace Research Foundation, the Richard Saltonstall Charitable Foundation, the Harrison Foundation, Hollis and Ermine Lovell Charitable Foundation, and the Richard Grand Foundation. AdV was supported by funding from the Schmidt Foundation

    Intracranial EEG structure-function coupling predicts surgical outcomes in focal epilepsy

    Get PDF
    Alterations to structural and functional brain networks have been reported across many neurological conditions. However, the relationship between structure and function -- their coupling -- is relatively unexplored, particularly in the context of an intervention. Epilepsy surgery alters the brain structure and networks to control the functional abnormality of seizures. Given that surgery is a structural modification aiming to alter the function, we hypothesized that stronger structure-function coupling preoperatively is associated with a greater chance of post-operative seizure control. We constructed structural and functional brain networks in 39 subjects with medication-resistant focal epilepsy using data from intracranial EEG (pre-surgery), structural MRI (pre-and post-surgery), and diffusion MRI (pre-surgery). We investigated pre-operative structure-function coupling at two spatial scales a) at the global iEEG network level and b) at the resolution of individual iEEG electrode contacts using virtual surgeries. At global network level, seizure-free individuals had stronger structure-function coupling pre-operatively than those that were not seizure-free regardless of the choice of interictal segment or frequency band. At the resolution of individual iEEG contacts, the virtual surgery approach provided complementary information to localize epileptogenic tissues. In predicting seizure outcomes, structure-function coupling measures were more important than clinical attributes, and together they predicted seizure outcomes with an accuracy of 85% and sensitivity of 87%. The underlying assumption that the structural changes induced by surgery translate to the functional level to control seizures is valid when the structure-functional coupling is strong. Mapping the regions that contribute to structure-functional coupling using virtual surgeries may help aid surgical planning

    Emended descriptions of Bacillus sporothermodurans and Bacillus oleronius with the inclusion of dairy farm isolates of both species

    Get PDF
    Bacillus sporothermodurans is an industrially important micro-organism because of its ability to produce endospores which resist ultra high temperature (UHT) and industrial sterilization processes. It was described by Pettersson et al. (1996) based on seven genetically homogeneous isolates all from UHT-milk. Bacillus oleronius, the closest phylogenetic neighbor of B. sporothermodurans, was described by Kuhnigk et al. (1995), based on a single strain, isolated from the hindgut of the termite Reticulitermes santonensis. A polyphasic study of a heterogeneous collection of B. sporothermodurans and B. oleronius strains isolated from various sources and geographic origins led to an emended description of both species. Additional data presented are the results of fatty acids, quinones and/or cell wall analysis (polar lipids). DNA-DNA hybridizations confirmed 3 subgroups of strains obtained after SDS-PAGE analysis of cellular proteins as B. sporothermodurans. One named B. sporothermodurans strain (R-7489) was reclassified as a Bacillus fordii strain. The phenotypic profiles of both species were rather heterogeneous, sometimes different from the original descriptions and did not differ in a large number of characters, although B. oleronius generally gave stronger reactions in its positive tests than did B. sporothermodurans; the variable and weak reactions for both organisms with some substrates blurred the distinction between both. However, differences in polar lipid, SDS-PAGE and menaquinone profiles clearly allow distinction between the two species

    The Impact of Temporal Lobe Epilepsy Surgery on Picture Naming and its Relationship to Network Metric Change

    Get PDF
    Background: Anterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory temporal lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of individuals experience a naming decline which can impact upon daily life. Measures of structural networks are associated with language performance pre-operatively. It is unclear if analysis of network measures may predict post-operative decline. Methods: White matter fibre tractography was performed on preoperative diffusion MRI of 44 left lateralised and left resection individuals with TLE to reconstruct the preoperative structural network. Resection masks, drawn on co-registered pre- and post-operative T1-weighted MRI scans, were used as exclusion regions on pre-operative tractography to estimate the post-operative network. Changes in graph theory metrics, cortical strength, betweenness centrality, and clustering coefficient were generated by comparing the estimated pre- and post-operative networks. These were thresholded based on the presence of the connection in each patient, ranging from 75% to 100% in steps of 5%. The average graph theory metric across thresholds was taken. We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation (SCAD) least absolute shrinkage and selection operator (LASSO) feature selection and a support vector classifier to assess graph theory metrics on picture naming decline. Picture naming was assessed via the Graded Naming Test preoperatively and at 3 and 12 months post-operatively and the outcome was classified using the reliable change index (RCI) to identify clinically significant decline. The best feature combination and model was selected using the area under the curve (AUC). The sensitivity, specificity and F1-score were also reported. Permutation testing was performed to assess the machine learning model and selected regions difference significance. Results: A combination of clinical and graph theory metrics were able to classify outcome of picture naming at 3 months with an AUC of 0.84. At 12 months, change in strength to cortical regions was best able to correctly classify outcome with an AUC of 0.86. Longitudinal analysis revealed that betweenness centrality was the best metric to identify patients who declined at 3 months, who will then continue to experience decline from 3-12 months. Both models were significantly higher AUC values than a random classifier. Conclusion: Our results suggest that inferred changes of network integrity were able to correctly classify picture naming decline after ATLR. These measures may be used to prospectively to identify patients who are at risk of picture naming decline after surgery and could potentially be utilised to assist tailoring the resection in order to prevent this decline

    Complementary structural and functional abnormalities to localise epileptogenic tissue

    Get PDF
    BACKGROUND: When investigating suitability for epilepsy surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation of the epileptogenic zone (EZ), improving surgical outcomes in epilepsy. METHODS: We retrospectively investigated data from 43 patients (42% female) with epilepsy who had surgery following iEEG. Twenty-five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls. We explored whether the resection of maximal abnormalities related to improved surgical outcomes, in both modalities individually and concurrently. Additionally, we suggest how connectivity abnormalities may inform the placement of iEEG electrodes pre-surgically using a patient case study. FINDINGS: Seizure freedom was 15 times more likely in patients with resection of maximal connectivity and iEEG abnormalities (p = 0.008). Both modalities separately distinguished patient surgical outcome groups and when used simultaneously, a decision tree correctly separated 36 of 43 (84%) patients. INTERPRETATION: Our results suggest that both connectivity and iEEG abnormalities may localise epileptogenic tissue, and that these two modalities may provide complementary information in pre-surgical evaluations. FUNDING: This research was funded by UKRI, CDT in Cloud Computing for Big Data, NIH, MRC, Wellcome Trust and Epilepsy Research UK

    Complementary structural and functional abnormalities to localise epileptogenic tissue

    Full text link
    When investigating suitability for surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation and resection of the epileptogenic zone (EZ), and improve surgical outcomes in epilepsy. We retrospectively investigated data from 43 patients with epilepsy who had surgery following iEEG. Twenty five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. For all patients, T1-weighted and diffusion-weighted MRIs were acquired prior to iEEG implantation. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls respectively. First, we explored whether the resection of maximal (dMRI and iEEG) abnormalities related to improved surgical outcomes. Second, we investigated whether the modalities provided complementary information for improved prediction of surgical outcome. Third, we suggest how dMRI abnormalities may be useful to inform the placement of iEEG electrodes as part of the pre-surgical evaluation using a patient case study. Seizure freedom was 15 times more likely in those patients with resection of maximal dMRI and iEEG abnormalities (p=0.008). Both modalities were separately able to distinguish patient outcome groups and when combined, a decision tree correctly separated 36 out of 43 (84%) patients based on surgical outcome. Structural dMRI could be used in pre-surgical evaluations, particularly when localisation of the EZ is uncertain, to inform personalised iEEG implantation and resection.Comment: 5 figure

    Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly

    Get PDF
    Background Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. Results We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. Conclusions We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.Peer reviewe

    Topical Imiquimod Treatment of High-grade Cervical Intraepithelial Neoplasia (TOPIC-3):A Nonrandomized Multicenter Study

    Get PDF
    Topical imiquimod could be an alternative, noninvasive, treatment modality for high-grade cervical intraepithelial neoplasia (CIN). However, evidence is limited, and there are no studies that compared treatment effectiveness and side effects of topical imiquimod cream to standard large loop excision of the transformation zone (LLETZ) treatment. A multi-center, nonrandomized controlled trial was performed among women with a histologic diagnosis of CIN 2/3. Women were treated with either vaginal imiquimod (6.25 mg 3 times weekly for 8 to 16 wk) or LLETZ according to their own preference. Successful treatment was defined as the absence of high-grade dysplasia at the first follow-up interval after treatment (at 20 wk for the imiquimod group and at 26 wk for the LLETZ group). Secondary outcome measures were high-risk human papillomavirus (hrHPV) clearance, side effects, and predictive factors for successful imiquimod treatment. Imiquimod treatment was successful in 60% of women who completed imiquimod treatment and 95% of women treated with LLETZ. hrHPV clearance occurred in 69% and 67% in the imiquimod group and LLETZ group, respectively. This study provides further evidence on topical imiquimod cream as a feasible and safe treatment modality for high-grade CIN. Although the effectiveness is considerably lower than LLETZ treatment, imiquimod treatment could prevent initial surgical treatment in over 40% of women and should be offered to a selected population of women who wish to avoid (repeated) surgical treatment of high-grade CIN

    Contribution of White Matter Fiber Bundle Damage to Language Change After Surgery for Temporal Lobe Epilepsy.

    Get PDF
    Background and Objectives:In medically refractory temporal lobe epilepsy (TLE), 30-50% of patients experience substantial language decline following resection in the language dominant hemisphere. Here, we investigate the contribution of white matter fiber bundle damage to language change at 3- and 12-months after surgery.Methods:We studied 127 patients who underwent TLE surgery from 2010–2019. Neuropsychological testing included picture naming, semantic, and phonemic verbal fluency, performed pre-operatively, 3- and 12-months post-operatively. Outcome was assessed using reliable change index (RCI; clinically significant decline) and change across timepoints (post- minus pre-operative scores).Functional MRI was used to determine language lateralization. The arcuate (AF), inferior fronto-occipital (IFOF), inferior longitudinal, middle longitudinal (MLF), and uncinate fasciculi were mapped using diffusion MRI probabilistic tractography. Resection masks, drawn comparing co-registered pre- and post-operative T1 MRI scans, were used as exclusion regions on pre-operative tractography to estimate the percentage of pre-operative tracts transected in surgery. Chi-squared assessments evaluated the occurrence of RCI-determined language decline. Independent samples T-tests and MM-estimator robust regressions were used to assess the impact of clinical factors and fiber transection on RCI and change outcomes, respectively.Results:Language dominant and non-dominant resections were treated separately for picture naming, as post-operative outcomes were significantly different between these groups. In language dominant hemisphere resections, greater surgical damage to the AF and IFOF was related to RCI-decline at 3 months. Damage to the inferior frontal sub-fasciculus of the IFOF was related to change at 3 months. In language non-dominant hemisphere resections, increased MLF resection was associated with RCI-decline at 3 months, and damage to the anterior sub-fasciculus was related to change at 3 months.Language dominant and non-dominant resections were treated as one cohort for semantic and phonemic fluency, as there were no significant differences in post-operative decline between these groups. Post-operative seizure freedom was associated with an absence of significant language decline 12 months after surgery for semantic fluency.Discussion:We demonstrate a relationship between fiber transection and naming decline after temporal lobe resection. Individualized surgical planning to spare white matter fiber bundles could help to preserve language function after surgery

    The Impact of Temporal Lobe Epilepsy Surgery on Picture Naming and its Relationship to Network Metric Change

    Get PDF
    BackgroundAnterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory temporal lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of individuals experience a naming decline which can impact upon daily life. Measures of structural networks are associated with language performance pre-operatively. It is unclear if analysis of network measures may predict post-operative decline.MethodsWhite matter fibre tractography was performed on preoperative diffusion MRI of 44 left lateralised and left resection individuals with TLE to reconstruct the preoperative structural network. Resection masks, drawn on co-registered pre- and post-operative T1-weighted MRI scans, were used as exclusion regions on pre-operative tractography to estimate the post-operative network. Changes in graph theory metrics, cortical strength, betweenness centrality, and clustering coefficient were generated by comparing the estimated pre- and post-operative networks. These were thresholded based on the presence of the connection in each patient, ranging from 75% to 100% in steps of 5%. The average graph theory metric across thresholds was taken.We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation (SCAD) least absolute shrinkage and selection operator (LASSO) feature selection and a support vector classifier to assess graph theory metrics on picture naming decline. Picture naming was assessed via the Graded Naming Test preoperatively and at 3 and 12 months post-operatively and the outcome was classified using the reliable change index (RCI) to identify clinically significant decline. The best feature combination and model was selected using the area under the curve (AUC). The sensitivity, specificity and F1-score were also reported. Permutation testing was performed to assess the machine learning model and selected regions difference significance.ResultsA combination of clinical and graph theory metrics were able to classify outcome of picture naming at 3 months with an AUC of 0.84. At 12 months, change in strength to cortical regions was best able to correctly classify outcome with an AUC of 0.86. Longitudinal analysis revealed that betweenness centrality was the best metric to identify patients who declined at 3 months, who will then continue to experience decline from 3-12 months. Both models were significantly higher AUC values than a random classifier.ConclusionOur results suggest that inferred changes of network integrity were able to correctly classify picture naming decline after ATLR. These measures may be used to prospectively to identify patients who are at risk of picture naming decline after surgery and could potentially be utilised to assist tailoring the resection in order to prevent this decline
    corecore